UNIVERSITETI I PRISHTINËS "HASAN PRISHTINA" FAKULTETI I INXHINIERISË MEKANIKE PROGRAMI: MEKATRONIKË

PUNIM DIPLOME MASTER

"Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera"

Mentori:

Prof.Ass.Dr. Xhevahir BAJRAMI

Studentja: BSc. Blerta HAJDINI

Prishtinë, 2022

UNIVERSITETI I PRISHTINËS "HASAN PRISHTINA"

Fakulteti i Inxhinierisë Mekanike eksiteti i prishtinës "Hasan prishtina.

Prishtinë

Pranuar me: 27.04. 2022				
Nj. org.			Viera	
08	869		_	

Këshillit të Fakultetit të Inxhinierisë Mekanike

Prishtinë

Në bazë të vendimit nr. 1461 të datës 01/11/2021, të Këshillit të Fakultetit të Inxhinierisë Mekanike në Prishtinë është formuar komisioni në përbërje:

- 1. Prof. Dr. Arbnor Pajaziti, kryetar
- 2. Prof. ass. Dr. Xhevahir Bajrami, mentor
- 3. Prof. Dr. Ramë Likaj, anëtar

Për vlerësimin e punimit Master me titull " Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera" të kandidates bachelor Blerta Hajdini.

Pas kontrollimit të punimit të lartpërmendur Komisioni jep këtë:

RAPORT

Punimi Master me titull " Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera" është hartuar në 6 (gjashtë) kapituj kryesor dhe është ilustruar me figura, grafe dhe tabela të nevojshme. Në përmbledhje/abstrakt shkurtimisht flitet për mënyrën sesi është bërë kombinimi mes visionit dhe robotikës dhe është treguar se çka përmban secili kapitull i shtjelluar në temën e diplomës.

Në kapitullin e dytë është bërë një hyrje e shkurtër rreth degës së robotikes e më pas janë cekur qëllimet, objektivat dhe kontributi i këtij punimi.

Në kapitullin e tretë është shpjeguar qka është vizioni makinerik dhe si përdoret në automatizimin e fabrikës, është folur për aplikimet më të zakonshme të vizionit makinerik (matja, numërimi, vendndodhja dhe dekodimi) dhe janë dhënë shembuj ku janë përdorur ato. Është folur rreth përfitimeve që sjell visioni makinerik në fabrika. Janë diskutuar 4 mënyra sesi vizioni makinerik mund t'i ndihmojë prodhuesit të kursejnë para (reduktimi i defekteve, rritja e rendimentit, gjurmimi i pjesëve dhe produkteve, respektimi i rregulloreve). Është treguar se pse ky proces i automatizuar është më i përshtatshëm për detyrat e përsëritura të inspektimit sesa inspektorët njerëzorë. Dhe në fund të kapitullit është diskutuar për elementet përbërëse të sistemit të vizionit makinerik (ndriçimi, thjerrëza, sensori, përpunimi i vizionit, komunikimi).

Në kapitullin e katërt përshkruhen dizajni, specifikimet, hapësira e punës dhe veçoritë e robotit Dobot Magician. Në këtë kapitull përshkruhen vetitë fizike të krahut robotik. Llojet e efektorëve të fundëm që mund ti shtohen krahut robotik.

Në kapitullin e pestë paraqitet modelimi kinematik i Dobot Magician. Ku është bërë zhvillimi i modelit të kinematikës direkte të krahut robotik për të gjetur pozicionet e koordinatave karteziane të majës së efektorit të fundëm nga koordinatat e dhëna të këndeve të nyjeve dhe është bërë gjetja e kinematikës e inverse të krahut robotik për të gjetur koordinatat e këndeve të nyjeve nga pozicionet e koordinatave karteziane të majës së efektorit të fundëm.

Në kapitullin e gjashtë së pari kandidati ka shpjeguar softuerin e përdorur dhe më pas ka realizuar disa shembuj ku praktikisht është bërë integrimi i robotikës dhe visionit, ku janë realizuar veprime si pozicionimi vizual, matja, detektimi dhe identifikimi. Tek <u>shembulli i parë</u> është bërë sortimi i ngjyrave, krahu robotik në këtë shembull e detekton bllokun me ngjyrën e kërkuar dhe më pas e vendosë atë bllok në pozitën e caktuar për atë ngjyrë. Në <u>shembullin e dytë</u> bëhet detektimi i defekteve të karaktereve, tek programi është shtuar kushti që nëse tek objekti me karakteret modeli i të cilave është shtuar në program nuk ka defekte, këto objekte vendosen në poziten me koordinata të përcaktuara, ndërsa nëse te ky objekt me këto karaktere ka defekte këto objekte vendosen në një pozit tjetër e cila është e paracaktuar.

<u>Shembulli i tretë</u> është matja dhe sortimi tek i cili shtohet kushti që të bëhet sortimi i rrathëve në bazë të vlerës së rrezës së tyre. Tek kushti janë vendosur 2 vlera ajo minimale dhe maksimale e kësaj rreze. Nëse plotësohet ky kusht rrethët e detektuar në mënyre automatike barten prej pozitës së tyre deri te pozita e paracaktuar, ndërsa nëse rrezja e këtij rrethi ndodhet jashtë këtyre vlerave nuk përmbushet kushti dhe këta rrathë vendosën në një pozitë tjetër poashtu e paracaktuar. <u>Shembulli i katërt</u> është vendosja e drejtkëndëshave në hapësirat në formë drejtkëndëshi, tek ky shembull në program është shtuar modeli i pllakës dhe i drejtkëndshit, poashtu është shtuar edhe skripta përmes të cilës llogaritet këndi i përputhjes mes drejtkëndëshi dhe prej kësaj fotografie nxjerrët këndi dhe koordinatat e qendrës së drejtkëndëshi (x,y) në të cilin ndodhet ai drejtkëndësh pastaj efektori i fundëm i robotit lëviz deri tek qendra e drejtkëndëshit në lartësi z statike dhe përmes presionit negativ e kap këtë objekt (drejtkëndëshin) pastaj prap përmes fotografimit të pllakës llogaritet këndi në të cilin ndodhët hapësirë.

Në bazë të të dhënave të përshkruara më lartë, Komisioni për Vlerësimin e punimit Master konsideron se punimi është hartuar në nivel të duhur, i pasqyruar me figura, diagrame dhe tabela të nevojshme. Prandaj komisioni i propozon Këshillit të Fakultetit të Inxhinierisë Mekanike në Prishtinë, që punimin Master, me titull "Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera", të kandidates Bachelor Blerta Hajdini, ta aprovoj si punim për Master, dhe ta jep në diskutim publik.

Prishtinë, 27.04.2022

Komisioni:

 1.Prof. Dr. Arbnor Pajaziti, kryetar
 Quantum

 2.Prof. ass. Dr. Xhevahir Bajrami, mentor
 Xheumetay

Valu

3.Prof. Dr. Ramë Likaj, anëtar_

UNIVERSITETI I PRISHTINËS "HASAN PRISHTINA"

Fakulteti i Inxhinierisë Mekanike eksiteti i prishtinës "Hasan prishtina.

Prishtinë

Pranuar me: 27.04. 2022				
Nj. org.			Viera	
08	869		_	

Këshillit të Fakultetit të Inxhinierisë Mekanike

Prishtinë

Në bazë të vendimit nr. 1461 të datës 01/11/2021, të Këshillit të Fakultetit të Inxhinierisë Mekanike në Prishtinë është formuar komisioni në përbërje:

- 1. Prof. Dr. Arbnor Pajaziti, kryetar
- 2. Prof. ass. Dr. Xhevahir Bajrami, mentor
- 3. Prof. Dr. Ramë Likaj, anëtar

Për vlerësimin e punimit Master me titull " Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera" të kandidates bachelor Blerta Hajdini.

Pas kontrollimit të punimit të lartpërmendur Komisioni jep këtë:

RAPORT

Punimi Master me titull " Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera" është hartuar në 6 (gjashtë) kapituj kryesor dhe është ilustruar me figura, grafe dhe tabela të nevojshme. Në përmbledhje/abstrakt shkurtimisht flitet për mënyrën sesi është bërë kombinimi mes visionit dhe robotikës dhe është treguar se çka përmban secili kapitull i shtjelluar në temën e diplomës.

Në kapitullin e dytë është bërë një hyrje e shkurtër rreth degës së robotikes e më pas janë cekur qëllimet, objektivat dhe kontributi i këtij punimi.

Në kapitullin e tretë është shpjeguar qka është vizioni makinerik dhe si përdoret në automatizimin e fabrikës, është folur për aplikimet më të zakonshme të vizionit makinerik (matja, numërimi, vendndodhja dhe dekodimi) dhe janë dhënë shembuj ku janë përdorur ato. Është folur rreth përfitimeve që sjell visioni makinerik në fabrika. Janë diskutuar 4 mënyra sesi vizioni makinerik mund t'i ndihmojë prodhuesit të kursejnë para (reduktimi i defekteve, rritja e rendimentit, gjurmimi i pjesëve dhe produkteve, respektimi i rregulloreve). Është treguar se pse ky proces i automatizuar është më i përshtatshëm për detyrat e përsëritura të inspektimit sesa inspektorët njerëzorë. Dhe në fund të kapitullit është diskutuar për elementet përbërëse të sistemit të vizionit makinerik (ndriçimi, thjerrëza, sensori, përpunimi i vizionit, komunikimi).

Në kapitullin e katërt përshkruhen dizajni, specifikimet, hapësira e punës dhe veçoritë e robotit Dobot Magician. Në këtë kapitull përshkruhen vetitë fizike të krahut robotik. Llojet e efektorëve të fundëm që mund ti shtohen krahut robotik.

Në kapitullin e pestë paraqitet modelimi kinematik i Dobot Magician. Ku është bërë zhvillimi i modelit të kinematikës direkte të krahut robotik për të gjetur pozicionet e koordinatave karteziane të majës së efektorit të fundëm nga koordinatat e dhëna të këndeve të nyjeve dhe është bërë gjetja e kinematikës e inverse të krahut robotik për të gjetur koordinatat e këndeve të nyjeve nga pozicionet e koordinatave karteziane të majës së efektorit të fundëm.

Në kapitullin e gjashtë së pari kandidati ka shpjeguar softuerin e përdorur dhe më pas ka realizuar disa shembuj ku praktikisht është bërë integrimi i robotikës dhe visionit, ku janë realizuar veprime si pozicionimi vizual, matja, detektimi dhe identifikimi. Tek <u>shembulli i parë</u> është bërë sortimi i ngjyrave, krahu robotik në këtë shembull e detekton bllokun me ngjyrën e kërkuar dhe më pas e vendosë atë bllok në pozitën e caktuar për atë ngjyrë. Në <u>shembullin e dytë</u> bëhet detektimi i defekteve të karaktereve, tek programi është shtuar kushti që nëse tek objekti me karakteret modeli i të cilave është shtuar në program nuk ka defekte, këto objekte vendosen në poziten me koordinata të përcaktuara, ndërsa nëse te ky objekt me këto karaktere ka defekte këto objekte vendosen në një pozit tjetër e cila është e paracaktuar.

<u>Shembulli i tretë</u> është matja dhe sortimi tek i cili shtohet kushti që të bëhet sortimi i rrathëve në bazë të vlerës së rrezës së tyre. Tek kushti janë vendosur 2 vlera ajo minimale dhe maksimale e kësaj rreze. Nëse plotësohet ky kusht rrethët e detektuar në mënyre automatike barten prej pozitës së tyre deri te pozita e paracaktuar, ndërsa nëse rrezja e këtij rrethi ndodhet jashtë këtyre vlerave nuk përmbushet kushti dhe këta rrathë vendosën në një pozitë tjetër poashtu e paracaktuar. <u>Shembulli i katërt</u> është vendosja e drejtkëndëshave në hapësirat në formë drejtkëndëshi, tek ky shembull në program është shtuar modeli i pllakës dhe i drejtkëndshit, poashtu është shtuar edhe skripta përmes të cilës llogaritet këndi i përputhjes mes drejtkëndëshi dhe prej kësaj fotografie nxjerrët këndi dhe koordinatat e qendrës së drejtkëndëshi (x,y) në të cilin ndodhet ai drejtkëndësh pastaj efektori i fundëm i robotit lëviz deri tek qendra e drejtkëndëshit në lartësi z statike dhe përmes presionit negativ e kap këtë objekt (drejtkëndëshin) pastaj prap përmes fotografimit të pllakës llogaritet këndi në të cilin ndodhët hapësirë.

Në bazë të të dhënave të përshkruara më lartë, Komisioni për Vlerësimin e punimit Master konsideron se punimi është hartuar në nivel të duhur, i pasqyruar me figura, diagrame dhe tabela të nevojshme. Prandaj komisioni i propozon Këshillit të Fakultetit të Inxhinierisë Mekanike në Prishtinë, që punimin Master, me titull "Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera", të kandidates Bachelor Blerta Hajdini, ta aprovoj si punim për Master, dhe ta jep në diskutim publik.

Prishtinë, 27.04.2022

Komisioni:

 1.Prof. Dr. Arbnor Pajaziti, kryetar
 Quantum

 2.Prof. ass. Dr. Xhevahir Bajrami, mentor
 Xheumetay

Valu

3.Prof. Dr. Ramë Likaj, anëtar_

UNIVERSITY OF PRISHTINA "HASAN PRISHTINA" FACULTY OF MECHANICAL ENGINEERING PROGRAM: MECHATRONICS

MASTER THESIS

"Manipulation of a robotic arm based on images taken by the camera"

Mentor:

Candidate:

Prof.Ass.Dr. Xhevahir BAJRAMI

BSc. Blerta HAJDINI

Prishtinë, 2022

1. ABSTRAKTI

Vizioni dhe robotika mund të kombinohen së bashku për të formuar një zgjidhje të fuqishme për kërkesat e automatizimit. Te kjo temë këto të dyja kombinohen duke përdorur kamerën e cila i kap imazhet, programin i cili shërben për krijimin e algoritmit dhe krahut robotik për realizimin e komandave të ndryshme të parashtruara në program.

Në fillim të këtij punimi është bërë një hyrje në vizionin makinerik e më pas është shpjeguar dizajni, specifikimi, hapësira e punës dhe tiparet e krahut robotik të përdorur.

Është bërë zhvillimi i modelit të kinematikës direkte të krahut robotik për të gjetur pozicionet e koordinatave karteziane të majës së efektorit të fundëm nga koordinatat e dhëna të këndeve të nyejve.

Është bërë gjetja e kinematikës e inverse të krahut robotik për të gjetur koordinatat e këndeve të nyejve nga pozicionet e koordinatave karteziane të majës së efektorit të fundëm.

Është bërë integrimi i robotikës dhe vizionit në mënyrë praktike, duke realizuar disa shembuj ku përmes krahut robotikë janë realizuar, sortimi automatik i objekteve me ngjyra të ndryshme, sortimi automatik i objekteve me defekte dhe atyre pa defekte, sortimi automatik i objekteve sipas madhësisë. Dhe tek shembulli i fundit pas ekzekutimit të programit bëhet llogaritja e koordinatave të objektit dhe koordinatave të hapësirës ku duhet të vendoset ai objekt në mënyrë automatike ku kapja dhe vendosja e objektit realizohet përmes krahut robotik.

1. ABSTRACT

Vision and robotics can be combined together to form a powerful solution for automation requirements. In this thesis, these two are combined using the camera, which captures the images, the software that serves to create the algorithm and the robotic arm to execute the various commands set out in the software.

At the beginning of this thesis an introduction is made to the machine vision and then the design, specification, workspace and features of the robotic arm used are explained.

The forward kinematics model of the robotic arm has been developed to find the end-effector tip's cartesian co-ordinate positions from given joint angle coordinates.

The inverse kinematics of the robotic arm was calculated to find the joint angle co-ordinates from the end-effector tip's cartesian co-ordinate positions.

The integration of robotics and vision has been done in a practical way, by analyzing and executing some examples where through the robotic arm are realized: Automatic sorting of objects with different colors; Automatic sorting of objects with defects and those without defects; Automatic sorting of objects by size. And in the last example after the execution of the program the coordinates of the object and the coordinates of the space where the object should be placed are calculated automatically, where the pick and placement of the object is done through the robotic arm.

Këtë punim ia dedikoj familjes time të shtrenjtë!

LISTA E FIGURAVE

Figura 2.1 Robotët industrial gjatë punës	. 12
Figura 3.1 Elementet e vizionit makinerik gjatë punës	. 14
Figura 3.2 Softueri gjatë analizimit të imazheve të marra të pjesëve	. 15
Figura 3.3 Proceset ku përdoret vizioni makinerik	. 16
Figura 3.4 Funksionet bazë të vizionit të makinës	. 16
Figura 3.5 Gjatë kontrollit nëse matja ndodhet brenda kufijve të shmangieve të lejueshme nga	
sistemi i vizionit	. 17
Figura 3.6 Gjatë matjes së hapësirës mes elektrodave në kandelë nga sistemi i vizionit	. 17
Figura 3.7 Një fllanxhë alumini	. 18
Figura 3.8 Gjatë kontrollimit të veçorive nga sistemi i visionit	. 18
Figura 3.9 Gjatë analizimit të mungesës/prezencës së pjesëve nga sistemi i vizionit	. 19
Figura 3.10 Gjatë gjetjes së pozicionit dhe orientimit të pjesës nga sistemi i vizionit	. 20
Figura 3.11 Kandelat gjatë kalimit në një shirit transportues ku janë të vendosura elementet e	
sistemit të vizionit	. 20
Figura 3.12 Kandela duke u analizuar nga sistemi i vizionit	. 21
Figura 3.13 Gjetja e një modeli (dizajni) unik për ta identifikuar një pjesë	. 21
Figura 3.14 Barkodet lineare	. 22
Figura 3.15 Simbologjitë e grumbulluara	. 22
Figura 3.16 Simbolologjitë 2D	. 23
Figura 3.17 Fontet OCR	. 23
Figura 3.18 Regjistrimi i informacionit si të dhëna historike	. 23
Figura 3.19 Kanaçet me perime gjatë procesit të konservimit	. 25
Figura 3.20 Gjatë kontrollimit të kodit në fund të kanaqes nga sistemi i visionit	. 25
Figura 3.21 Proceset industriale për kursimin e parave dhe rritjen e përfitimit	. 26
Figura 3.22 Produkt me etiketim të gabuar	. 27
Figura 3.23 Gjatë verifikimit të kodit të vendosur në kanaçe nga ana e sistemit të vizionit	. 27
Figura 3.24 Rritja e rendimentit përmes proceseve të vizionit makinerik	. 28
Figura 3.25 Gjatë matjeve të kryera nga sistemi i vizionit në një kornizë të modifikuar plumbi.	. 28
Figura 3.26 Gjatë monitorimit të rreshtimit të produkteve në konvejer nga sistemi i vizionit	. 29
Figura 3.27 Gjurmimi i pjesëve dhe produkteve	. 30
Figura 3.28 Gjatë identifikimit të kodeve në një PCB nga sistemi i vizionit	. 30
Figura 3.29 Gjatë verifikimit të etiketave nga sistemi i visionit	. 31
Figura 3.30 Komponentët e sistemeve të vizionit të makinerik	. 32
Figura 3.31 Llojet e sistemeve të vizionit të makinerik	. 33
Figura 3.32 Komponentet e konfigurimeve të sistemeve të vizionit të makinerik	. 33
Figura 3.33 Dallimet në fotografinë e marrë në bazë të ndriçimit të pjesës	. 34
Figura 3.34 Fotografi të poçit elektrik kur ndriçimi është e vendosur në pozicione të ndryshme	:34
Figura 3.35 Qartesia e objektivit në varësi të pozicionimit të ndriçimit	. 35
Figura 3.36 Pozita e dritës në imazhin e parë dhe të dytë	. 35
Figura 3.37 Qartesia e objektivit në varësi të pozicionimit të ndriçimit	. 35
Figura 3.38 Qartësia e objektivit në varësi të llojit të ndriçimit	. 36
Figura 3.39 Pozita e dritës në imazhin e parë dhe të dytë	. 36
Figura 3.40 Fusha e shikimit, pika tokale dhe thellësia e fokusit	. 37
Figura 3.41 Imazhe të marra me të njëjtën kamerë duke përdorur thjerrëza të ndryshme	. 37
Figura 3.42 Pamja skematike sesi thjerrëza ia dërgon imazhin sensorit	. 38

Figura 3.43 Imazh dixhital	. 38
Figura 3.44 Zmadhimi i imazhit paraprak	. 39
Figura 3.45 Imazhi i njëjtë i kapur me rezolucione të ndryshme	. 39
Figura 3.46 Llojet e sistemeve të përpunimit të imazhit	. 40
Figura 3.47 Softuer për përpunimin e imazhit	. 40
Figura 3.48 Softueri duke lokalizuar kapakun në një shishe	. 41
Figura 3.49 Hapat e përpunimit të vizionit	. 41
Figura 3.50 Informata të nxierra nga imazhet e marra	. 42
Figura 3.51 Komunikimi i të dhënave	. 42
Figura 3.52 Dritë me dy segmente me ngjyra e cila tregon kushte të ndryshme në makinë ose	
proces	. 43
Figura 3.53 Ekran HMI	. 43
Figura 3.54 Sistemi për inspektimin e nivelit të mbushies dhe vendosies së kapakut të shisheve	e të
uiit	. 44
Figura 4.1 Hapësira e punës së robotit Dobot Magician	. 47
Figura 4.2 Hapësira e punës e robotit Dobot Magician	. 47
Figura 5.1 Alokimi i sistemeve koordinative	48
Figura 5.2 Alokimi i sistemeve koordinative për Dobot Magician [10]	49
Figura 5.3 Gieometria planare e rrotullimeve vertikale	58
Figura 5.4 Gieometria e rrafshit e rrotullimit horizontal	. 50 60
Figura 6.1 Equia e mirëseardhies	. 00 61
Figura 6.2 Dritaria e programit	. 01 62
Figura 6.2 Dritaria DobotStudio	. 02 63
Figure 6.4 Plloget me ngivre	. 05 63
Figura 0.4 Diloqet ille ligjyla	. 05
Figura 6.5 Krjedna e pergjunsnine e zgjunjes	. 04
Figura 6.6 Parametrat e perzgjednur te bliokut Camera	. 64
Figura 6. / Pamja e marre nga kamera pas perzgjednjes se parametrave	. 65
Figura 6.8 Vierat RGB	. 65
Figura 6.9 Vendosja e ngjyres	. 66
Figura 6.10 Imazhi pas ekzekututimit të bllokut Color Extraction	. 66
Figura 6.11 Parametrat e përzgjedhur të bllokut Image Morph	. 67
Figura 6.12 Imazhi pas ekzekutimit të bllokut Image Morph	. 67
Figura 6.13 Imazhi dhe informacionet e nxjerra pas ekzekutimit të bllokut BLOB	. 68
Figura 6.14 Parametrat e përzgjedhur te dritarja e bllokut Calibration Transformation	. 68
Figura 6.15 Shtimi i fajllit të kalibrimit	. 69
Figura 6.16 Koordinatat fizike të qendrës së bllokut të detektuar pas ekzekutimit të bllokut	
Calibration Transformation	. 69
Figura 6.17 Lloji i lëvizjes Jump	. 70
Figura 6.18 Zgjedhja e opsioneve me koordinatat fizike përkatëse	. 70
Figura 6.19 Efektori i fundëm në pozitën mbi kub me qëllim që të merret vlera e lartësisë kubi	it
nga bazamenti	. 71
Figura 6.20 Plotësimi i dritares Move Point me koordinaten Z të robotit	. 71
Figura 6.21 Parametrat e zgjedhur tek blloku Suction Cup për aktivizimin e pompës	. 72
Figura 6.22 Bartja e vlerave të koordinatës X,Y dhe Z të robotit tek dritarja Move Point	. 72
Figura 6.23 Parametrat e zgjedhur tek blloku Suction Cup për ta lëshuar kubin	. 73
Figura 6.24 Gjatë testimit të programit	. 73

Figura 6.25 Objektet e përdorura te shembulli detektimi i defekteve të karaktereve	74
Figura 6.26 Rrjedha e përgjithshme e zgjidhjes	75
Figura 6.27 Parametrat e përzgjedhur të bllokut Camera	75
Figura 6.28 Pamja e marrë nga kamera pas përzgjedhjes së parametrave	76
Figura 6.29 Dritarja Feature Template e bllokut Fast Match	76
Figura 6.30 Dritarja ModelSettings	77
Figura 6.31 Blloku Fast Match - Numri, koordinatat, këndi dhe shkalla e përputhshmërisë së	<u>j</u>
objektit në imazhin e marr nga kamera dhe modelit të krijuar	77
Figura 6.32 Krijimi i pikës fiduciale	78
Figura 6.33 Parametrat bazik të bllokut OCV	79
Figura 6.34 Krijimi i modelit të karaktereve	79
Figura 6.35 Modelet e karaktereve të gjeneruara nga blloku OCV	80
Figura 6.36 Detektimi i defekteve të karaktereve pas ekzekutimit të programit	80
Figura 6.37 Modelet e karaktereve të gjeneruara të bllokut OCV të dytë	81
Figura 6.38 Parametrat e zgjedhur të bllokut Image Morph	81
Figura 6.39 Pamja pas ekzekutimit të bllokut Image Morph	82
Figura 6.40 Imazh në shkallë gri	82
Figura 6.41 Parametrat e përzgiedhur te blloku BLOB	82
Figura 6.42 Rezultati pas ekzekutimit të bllokut BLOB	83
Figura 6.43 Parametrat e bllokut Calibration Transformation	
Figura 6 44 Blloku Calibration Transformation -Vlera e koordinatave fizike të objektit të	
detektuar	84
Figura 6 45 Marria e vlerës së koordinatës fizike Z	
Figura 6.46 Parametrat e bllokut Move Point	
Figure 6.47 Parametrat e zgjedhur tek blloku Suction Cun	05
Figure 6.48 Blloku If Module	05
Figura 6 49 Blloku Branch	00
Figura 6.50 Caktimi i pozitës ku vendosen objektet e detektuara na defekte	00
Figura 6.51 Parametrat e zgjedbur tek blloku Suction Cun p ër ta lëshuar objektin	07
Figura 6.52 Caktimi i pozitës ku vendosen objektet e detektuara me defekte	
Figura 6.52 Parametrat e zgjedbur tek blloku Suction Cun p ër ta lëshuar objektin	00
Figura 6.54 Caktimi i dagës që akzakutohat kur piesa është na defekt dhe e anasiallta	00
Figura 6.55 Blloku Fost Match (Numri koordinatat kändi dha shkalla a pärputhshmärisä sä	07
objektit në imazhin e marr nga kamera dhe modelit të krijuar)	80
Figure 6.56 Biloku Positon Correction (Vlere e BaseDoint dhe BunningDoint)	00
Figure 6.57 Piloku OCV (Defektet a detektuere të kerektereve)	90
Figura 6.58 Piloku Unga Marph (Defektet e detektuara të karaktereve)	90
Figura 6.50 Diloku Hiage Morph (Defekter e defektuara te karaktereve)	91
PI OP ava)	01
Eigure 6 60 Piloku Calibration Transformation (Voordinatat fizika tä gandräs sä abiektit ti	91
detaktuar)	ົດາ
Eigure 6 61 Piloku If Module (Nuk plotësohet kushti – Diese me defekte)	92
Figura 6.62 Piloku Fost Motoh (Numri koordinatat kändi dha ahkalla a närruthahmärisä sä	92
rigura 0.02 Dhoku rasi iviaich (ivunin, koordinatal, kendi dhe shkalia e perputhshmerise se	02
Digitize 6.62 Dilata Degiter Correction (Views a DegeDeint die Degemeine Deint)	93
Figura 0.05 DHOKU POSILOR COFFECTION (VIETA & Baseroint and Kunningroint)	93
Figura 0.04 BHOKU UUV (Derektet e detektuara te karaktereve)	94

Figura 6.65 Blloku Image Morph (Defektet e detektuara të karaktereve)	94
Figura 6.66 Blloku BLOB (Prania, sasia, pozicioni, forma, orientimi dhe lidhja topologjike	midis
BLOB-eve)	95
Figura 6.67 Blloku Calibration Transformation (Koordinatat fizike të qendrës së objektit	të
detektuar)	95
Figura 6.68 Blloku If Module (Plotësohet kushti = Pjesa pa defekte)	96
Figura 6.69 Objektet në formë të rrumbullakët të përdorura	96
Figura 6.70 Rrjedha e përgjithshme e zgjidhjes	97
Figura 6.71 Parametrat e përzgjedhur të bllokut Camera	97
Figura 6.72 Parametrat e bllokut Find Circle	98
Figura 6.73 Parametrat e bllokut Scale Transformation dhe vlera e rrezes së rrethit të detel	ctuar
Figura 6.74 Parametrat e bllokut Calibration Transformation dhe koordinatat e qendrës së	98 3
rrethit të detektuar	99
Figura 6.75 Parametrat e bllokut Move Point	99
Figura 6.76 Parametrat e zgjedhur tek blloku Suction Cup	100
Figura 6.77 Blloku If Module	100
Figura 6.78 Parametrat e përzgjedhur te blloku Branch	101
Figura 6.79 Blloqet nga degëzimi i parë	101
Figura 6.80 Blloqet nga degëzimi i dytë	102
Figura 6.81 Kushti (Rrezja e rrethit të detektuar duhet të ndodhet mes 15 dhe 20mm)	102
Figura 6.82 Blloku Find Circle (Koordinatat e qendrës së rrethit të detektuar)	102
Figura 6.83 Blloku Scale Transformation (Vlera e rrezes së rrethit të detektuar në milimeti	ra)
	103
Figura 6.84 Blloku Calibration Transformation (Vlera e koordinatave fizike të qendrës së	2
rrethit të detektuar)	103
Figura 6.85 Blloku If Module (Nuk plotësohet kushti = (Rrezja e rrethit të detektuar nuk	
ndodhet mes 15 dhe 20mm))	104
Figura 6.86 Kushti (Rrezja e rrethit të detektuar duhet të ndodhet mes 15 dhe 30mm)	104
Figura 6.87 Blloku Find Circle (Vlera e koordinatave të qendrës së rrethit të detektuar)	104
Figura 6.88 Blloku Scale Transformation (Vlera e rrezes së rrethit të detektuar në milimet	ra)
	105
Figura 6.89 Blloku Calibration Transformation (Vlera e koordinatave fizike të qendrës së	
rrethit të detektuar)	105
Figura 6.90 Blloku If Module (Plotësohet kushti = (Rrezja e rrethit të detektuar ndodhet m	les 15
dhe 30mm))	106
Figura 6.91 Drejtkëndëshat dhe pllaka me hapësira në formë drejtkëndëshi	106
Figura 6.92 Drejtkëndëshat dhe pllaka me hapësira në formë drejtkëndëshi	107
Figura 6.93 Rrjedha e përgjithshme e zgjidhjes	108
Figura 6.94 Parametrat e bllokut Camera	108
Figura 6.95 Blloku Fast Match	109
Figura 6.96 Dritarja ModelSettings	109
Figura 6.97 Rezultati pas ekzekutimit të bllokut Fast Match	110
Figura 6.98 Blloku Shell Module	111
Figura 6.99 Blloku Calibration Transformation	113
Figura 6.100 Parametrat e bllokut Move Point	113

Figura 6.101 Parametrat e zgjedhur tek blloku Suction Cup	. 114
Figura 6.102 Parametrat e bllokut Move Point	. 114
Figura 6.103 Përzgjidhja e ROI tek blloku Fast Match për pllakën	. 115
Figura 6.104 Krijimi i modelit për hapësirat në formë drejtkëndëshi	. 115
Figura 6.105 Rezultati pas ekzekutimit të bllokut Fast Match	. 116
Figura 6.106 Blloku Shell Module	. 117
Figura 6.107 Parametrat e bllokut Calibration Transformation	. 119
Figura 6.108 Koordinatat fizike të qendrës së hapësirës në formë drejtkëndëshi të detektuar	. 119
Figura 6.109 Parametrat e bllokut Move Point	. 120
Figura 6.110 Parametrat e zgjedhur tek blloku Suction Cup	. 120
Figura 6.111 Parametrat e bllokut Move Point	. 121
Figura 6.112 Pamja fillestare	. 121
Figura 6.113 Blloku 1Fast Match	. 122
Figura 6.114 Pamja pas ekzekutimit të bllokut 4Move Point për Z=-62.5443; R=0	. 122
Figura 6.115 Pamja pas ekzekutimit të bllokut 6Move Point për Z=0; R=2shell Module.angle	e1
	. 123
Figura 6.116 Blloku 7Fast Match	. 123
Figura 6.117 Pamja pas ekzekutimit të bllokut 10Move Point për Z=-60.5443 ;R=8shell	
Module.angle2	. 124
Figura 6.118 Pamja finale për Z=50.1084 ;R=0	. 124
Figura 6.119 Pamja fillestare	. 125
Figura 6.120 Blloku 1Fast Match	. 125
Figura 6.121 Pamja pas ekzekutimit të bllokut 4Move Point për Z=-62.5443; R=0	. 126
Figura 6.122 Pamja pas ekzekutimit të bllokut 6Move Point për Z=0; R=2shell Module.angle	e1
	. 126
Figura 6.123 Pamja pas ekzekutimit të bllokut 10Move Point për Z=-60.5443; R=8shell	
Module.angle2	. 127
Figura 6.124 Pamja finale për Z= 50.1084 ;R= 0	. 128
Figura 6.125 Pamja fillestare	. 128
Figura 6.126 Blloku 1Fast Match	. 129
Figura 6.127 Pamja pas ekzekutimit të bllokut 4Move Point për Z=-62.5443; R=0	. 129
Figura 6.128 Pamja pas ekzekutimit të bllokut 6Move Point për Z=0 ;R=2shell Module.angle	el
	. 130
Figura 6.129 Blloku 7 Fast Match	130
Figura 6.130 Pamja pas ekzekutimit te bllokut 10Move Point per Z=-60.5443 ;R=8shell	101
Module.angle2	131
Figura 6.131 Pamja finale per $Z=50.1084$; R=0	131
Figura 6.132 Pamja fillestare	132
Figura 6.133 Blloku IFast Match	132
Figura 6.134 Pamja pas ekzekutimit te bilokut 4Nove Point (Z =-62.5443 ;R=0)	133
Figura 6.135 Pamja pas ekzekutimit te bllokut 6Nove Point per Z=0; R=2shell Module.angle	el 122
Eigung 6 126 Dilahu 7E agt Matak	133
FIGURA 0.150 BIIOKU / FAST MIATCH	154
rigura 0.157 Pamja pas ekzekutimit te bilokut IUNIOVE Point per Z=-60.5443 ;R=8shell	124
Violule.angle2	134
Figura 0.138 Pamja finale per $\angle = 50.1084$; K=0	. 135

Figura 9.1 Rrjedha e përgjithshme e zgjidhjes	139
Figura 9.2 Parametrat e bllokut Camera	140
Figura 9.3 Vendosja e pllakës së kalibrimit në pamjen e kamerës	140
Figura 9.4 Pamja pas ekzekutimit të bllokut CalibBoard Calib	141
Figura 9.5 9 pikat e kalibrimit	141
Figura 9.6 Blloku N-Point Calibration	142

LISTA E TABELAVE

Tabela 4.1 Specifikimet e krahut robotik Dobot Magician	45
Tabela 4.2 Ndërfaqet e Zgjerueshme Hyrëse/Dalëse	46
Tabela 4.3 Vetitë fizike të efektorit të fundëm	46
Tabela 4.4 Gama e lëvizjes dhe shpejtësisë së nyjeve	47
Tabela 5.1 Parametrat e modifikuar të DH	51
Tabela 6.1 Përshkrimi i faqes kryesore	62

2. Përmbajtja

1.	ABSTRAKTI	1
2.	HYRJA	12
	2.2 Qëllimet dhe objektivat	13
	2.3 Kontributi	13
3.	VIZIONI MAKINERIK	14
	3.1 Çka është vizioni makinerik dhe si përdoret në automatizimin e fabrikës	14
	3.2 Katër aplikimet më të zakonshme të vizionit makinerik	16
	3.3 Çfarë përfitimesh mund të sjellë vizioni makinerik në fabrika	26
	3.4 Katër mënyra se si vizioni makinerik mund t'i ndihmojë prodhuesit të kursejnë para	26
	3.4.1 Reduktimi i defekteve	26
	3.4.2 Rritja e rendimentit	28
	3.4.3 Gjurmimi i pjesëve dhe produkteve	29
	3.4.4 Respektimi i rregulloreve	31
	3.5 Pse ky proces i automatizuar është më i përshtatshëm për detyrat e përsëritura të inspektimit sesa inspektorët njerëzorë	32
	3.6 Pjesët kryesore të sistemit të vizionit makinerik	32
	3.6.1 Ndriçimi	34
	3.6.2 Thjerrëza	37
	3.6.3 Sensori	38
	3.6.4 Përpunimi i vizionit	40
	3.6.5 KOMUNIKIMI	42
4.	DIZAJNI, SPECIFIKIMI, HAPËSIRA E PUNËS DHE TIPARET E KRAHUT ROBO 45	ΓIK
	4.1 Rreth kapitullit	45
	4.2 Specifikimet e robotit Dobot Magician	45
	4.3 Vetitë fizike të robotit Dobot Magician	46
	4.4 Hapësira e punës robotit Dobot Magician	47
5.	KINEMATIKA E KRAHUT ROBOTIK	48
	5.1 Rreth kaptitulllit	48
	5.2 Kinematika	48
	5.2.1 Procedura e alokimit të sistemeve koordinative	48
	5.2.2 Përkufizimi i parametrave D-H	49
	5.2.3 Matricat e transformimit homogjen	51

5.2.4 Kinematika inverse	
6. EKSPERIMENTET	61
6.1 Aplikacioni DobotVisionStudio	61
6.2 Sortimi i ngjyrave	63
6.3 Detektimi i defekteve të karaktereve	74
6.4 Matja dhe sortimi	
6.5 Vendosja e drejtkëndëshave në hapësirat në formë drejtkëndëshi	106
7. PËRFUNDIMI	136
7.2 Rekomandimet	137
8. LITERATURA	138
9. SHTOJCA 1	
9.1 Kalibrimi i robotit	
10. DEKLARATA ETIKE	

2. HYRJA

Robotika është një degë ndërdisiplinore e kompjuterikes dhe inxhinierisë [1]. Robotika përfshin projektimin, ndërtimin dhe përdorimin e robotëve. Qëllimi i robotikës është të projektojë makina që mund të ndihmojnë njerëzit.

Figura 2.1 Robotët industrial gjatë punës

Robotika zhvillon makina që mund të zëvendësojnë njerëzit dhe të përsërisin veprimet njerëzore. Robotët mund të përdoren në shumë situata për shumë qëllime, por sot shumë prej tyre përdoren në mjedise të rrezikshme përfshirë inspektimin e materialeve radioaktive, zbulimin dhe çaktivizimin e bombave, proceset e prodhimit ose ku njerëzit nuk mund të mbijetojnë p.sh. në hapësirë, nën ujë, në nxehtësi të lartë, dhe pastrimi dhe frenimi i materialeve dhe rrezatimit të rrezikshëm.

Disa robotë kërkojnë ndërveprime nga ana e përdoruesit për të funksionuar ndërsa robotë të tjerë funksionojnë në mënyrë autonome. Një lloj autonomie e robotit sigurohet kur robotit i shtohet mundësia e perceptimit të mjedisit që e rrethon pra shtimi i vizionit.

2.2 Qëllimet dhe objektivat

Qëllimet dhe objektivat e kësaj teme janë:

- Zhvillimi i modelit të kinematikës direkte të krahut robotik për të gjetur pozicionet e koordinatave karteziane të majës së efektorit të fundëm nga koordinatat e dhëna të këndeve të nyjeve;
- Gjetja e kinematikës e inverse të krahut robotik për të gjetur koordinatat e këndeve të nyjeve nga pozicionet e koordinatave karteziane të majës së efektorit të fundëm;
- Integrimi i robotikës dhe vizionit në mënyrë praktike.

2.3 Kontributi

Kontributet kryesore të temës janë realizimi praktik i detyrave të mëposhtme:

- Sortimi automatik i objekteve me ngjyra të ndryshme përmes krahut robotik
- Sortimi automatik i objekteve me defekte dhe atyre pa defekte përmes krahut robotik
- Sortimi automatik i objekteve sipas madhësisë përmes krahut robotik
- Llogaritja e koordinatave të objektit dhe koordinatave të hapësirës ku duhet të vendoset ai objekt në mënyrë automatike ku kapja dhe vendosja e objektit realizohet përmes krahut robotik

3. VIZIONI MAKINERIK

3.1 Çka është vizioni makinerik dhe si përdoret në automatizimin e fabrikës

Vizioni i makinerik (ang. Machne Vision) përkufizohet si nxjerrja automatike e informacionit nga imazhet digjitale. [2]

Le të shohim një zbërthim themelor të një procesi tipik të vizionit makinerik. Kemi një linjë prodhimi me një rrjedhë të qëndrueshme të objekteve, ku është i vendosur një aparat fotografik ose sistem optik të trajnuar në linjë.

Figura 3.1 Elementet e vizionit makinerik gjatë punës

Sigurohemi që të kemi ndriçimin e duhur të linjës në mënyrë që kamera të mund të shohë detajet e nevojshme. Kamera kap fotografi dixhitale dhe analizon imazhet kundrejt një grupi të përcaktuar kriteresh, në një kontekst industrial.

Figura 3.2 Softueri gjatë analizimit të imazheve të marra të pjesëve

Ekzistojnë lloje të ndryshme të vizionit që përdoren për qëllime të tjera, por kur i referohemi vizionit makinerik, ne po flasim në mënyrë specifike për vizionin industrial pasi përdoret në një mjedis të prodhimit.

Prodhuesit përdorin vizionin e automatizuar makinerik në vend të inspektorëve njerëzorë, sepse është më i shpejtë, më konsistent dhe funksionon për periudha më të gjata kohore.

Teknologjia e vizionit filloi në vitet 1950, por përdorimi i gjerë i vizionit makinerik në industri u shfaq në vitet 1980 dhe 90.[3]

Sigurisht, vizioni makinerik ka bërë një rrugë të gjatë që atëherë dhe tani përdoret për shumë procese të ndryshme të vlefshme në prodhim.

Figura 3.3 Proceset ku përdoret vizioni makinerik

3.2 Katër aplikimet më të zakonshme të vizionit makinerik

Ndërsa është zhvilluar, aplikimet e vizionit të makinës janë ndarë në katër funksione bazë: matja, numërimi, vendndodhja dhe dekodimi.[4]

Figura 3.4 Funksionet bazë të vizionit të makinës

Që nga fillimi i tij, vizioni i makinerik është përdorur gjerësisht për matje, dhe me këtë nënkuptojmë matjen e automatizuar nga një makinë. Kjo matje më pas mund të kontrollohet nëse ndodhet brenda kufijve të shmangieve të lejueshme të dimensioneve (tolerancave).

Figura 3.5 Gjatë kontrollit nëse matja ndodhet brenda kufijve të shmangieve të lejueshme nga sistemi i vizionit

Për shembull, diçka që është bërë për vite me vizionin makinerik, është matja e hapësirës mes elektrodave në kandelë.

Figura 3.6 Gjatë matjes së hapësirës mes elektrodave në kandelë nga sistemi i vizionit

Siç mund ta dini, kjo hapësirë duhet të ketë një gjerësi të caktuar, ose makina nuk do të funksionojë aq mirë. Prandaj, kjo matje e kësaj gjerësie ka rëndësi kritike për pjesën.

Ne mund të përdorim një kamerë dhe të matim hapësirën mes elektrodave të kandelave me makinë. Kjo eliminon nevojën që një njeri të jetë atje për të matur dhe rregulluar hapësirën manualisht. Ne mund ta automatizojmë procesin dhe ta bëjmë atë më shpejt dhe më saktë.

Numërimi është një tjetër aplikim tipik i vizionit të makinës. Ka disa detyra të ndryshme që i përkasin kësaj kategorie, por në thelb, numërimi do të thotë të kërkosh një numër pjesësh ose një numër veçorish në një pjesë.

Figura 3.7 Një fllanxhë alumini

Numërimi na mundëson të përcaktojmë vendndodhjen e pjesëve që mungojnë dhe të sigurohemi që produktet të jenë montuar siç duhet.

Figura 3.8 Gjatë kontrollimit të veçorive nga sistemi i visionit

Në figurën 3.8 paraqitet një fllanxhë alumini me disa vrima të shpuara në të. Nëse numëroni vrimat, do të shihni se janë saktësisht tetë prej tyre. Duke supozuar se donim tetë vrima, ne e dimë se procesi i shpimit është bërë siç duhet.

Një funksion tjetër numërimi është mungesa/prezenca, a është aty apo jo.

Figura 3.9 Gjatë analizimit të mungesës/prezencës së pjesëve nga sistemi i vizionit

Në figurën 3.9 kemi një paketë me tetë pije të gazuara dhe ju mund të shihni që mungon një nga pijet e gazuara. Me vizionin makinerik, ky paketim mund të kontrollohet për t'u siguruar që një paketë jo e plotë të mos arrijë në raftin e dyqaneve ushqimore.

Vendndodhja, është kur vizioni makinerik përdoret për të raportuar pozicionin dhe orientimin e një pjese. Kjo mund të bëhet për disa arsye. Ne mund të gjejmë pozicionin dhe orientimin, dhe më pas ta kontrollojmë nëse ndodhet brenda kufijve të shmangieve të lejueshme të dimensioneve (tolerancave).

Figura 3.10 Gjatë gjetjes së pozicionit dhe orientimit të pjesës nga sistemi i vizionit

Pra, me fjalë të tjera, ju po shikoni pjesën për t'u siguruar që është në këndin e duhur. Dhe duke e përdorur atë si një pikë referimi për të verifikuar montimin e duhur.

Ju mund ta përdorni këtë gjithashtu për shtrirjen ndaj mjeteve tjera të vizionit makinerik. Le të marrim shembullin tonë të kandelave.

Figura 3.11 Kandelat gjatë kalimit në një shirit transportues ku janë të vendosura elementet e sistemit të vizionit

Vendndodhja është një veçori shumë e fuqishme në vizionin makinerik.

Pjesët mund të jen të kenë pozita të ndryshme ndërsa kalojnë përgjatë linjës së prodhimit.

Figura 3.12 Kandela duke u analizuar nga sistemi i vizionit

Kur mund ta gjeni vendndodhjen e një pjese, drejtohet imazhi dhe më pas mund të përdoren mjete të tjera të përpunimit të vizionit makinerik në të.

Për më tepër, mund të gjeni një model (dizajn) unik dhe ta përdorni atë për të identifikuar një pjesë.

Figura 3.13 Gjetja e një modeli (dizajni) unik për ta identifikuar një pjesë

Një shembull që mund të shihni në figurën paraprake është një kanaçe supë. Sistemi i vizionit është trajnuar për të kërkuar një model (dizajn) mbi supë. Në këtë rast, pjesa e etiketës që thotë "TOMATO" mbi të.

Ne mund ta përdorim atë model për të verifikuar që ne në fakt kemi supën e duhur që shkon përgjatë linjës.

Dekodimi i referohet dekodimit të simbolologjive 1D dhe 2D. Të tilla si barkodet lineare të treguara në figurën në vijim.

Figura 3.14 Barkodet lineare

Simbologjitë e grumbulluara siç shihni në figurën në vijim.

Figura 3.15 Simbologjitë e grumbulluara

Dhe simbolologjitë 2D sikurse kodet e matricës së të dhënave.

Figura 3.16 Simbolologjitë 2D

Kjo i referohet gjithashtu OCR ose njohjes optike të karaktereve, që është tekst që është njëkohësisht i lexueshëm nga njeriu dhe nga makinat.

Figura 3.17 Fontet OCR

Dekodimi zakonisht përdoret për të regjistruar informacionin si të dhëna historike. Në këtë mënyrë ju keni një regjistrim të pjesëve që kanë kaluar nëpër një proces.

800020MAL657	09:5 MICROSCAN	N		Windowscope 10	
7281AM96909	09:5	INCOME DESIGNATION OF	(mm)	General Property Plan	
2597464522	09:5	Test test		Attantant Aprente	
11007281AM96911	09:5		Tax but		
25696WA1925	09:5				
22814M96913	09:5		2 2 2 2		
7281AM96914	09:5		0 et 1		
2401A096915	09:5		00		
91696MAL025	09:5	64AMAU6			F
7281AM96917	09:5	F	RESHNESS		
81695WAT928	09:5				
7281AM96919	09:5	6PB025	HG MAT		
05696WA1920	09:5				
15696WA1857	09:5			6 81131 0039	
22614M96922	09:5			11	
25636MAC652	09:5		Contraction in contraction of the local distance of the local dist	1	
7281AM96924	09:5		STREET, STREET	· · · · · · · · · · · · · · · · · · ·	100000
25636MA46525	09:5			VM,R V3/288	
72834M96926	09:51:45 09:	:51:48		0	. Crittenality
7281AM96927	09:51:48 09:	:51:50			
25676WW1929	09:51:50 09:	:51:52			
25636MAL6529	09:51:52 09:	:51:54			
026996MA1822	09:51:53 09:	:51:56			
126796WA1923	09:51:55 09:	:51:58			
25695WA1925	09:51:58 09:	:52:01			
2563AM96933	09:52:03 09:	:52:06			
100 1004 4807	DD.C2.DC DD.				

Figura 3.18 Regjistrimi i informacionit si të dhëna historike

Ju mund të gjurmoni rrugën që ka kaluar një pjesë përmes atij procesi dhe t'i përdorni ato të dhëna për veprim të menjëhershëm. Që do të thotë ju mund t'i shikoni të dhënat dhe të sortoni në bazë të tyre.

Ju gjithashtu mund të vërtetoni të dhënat për korrektësi. Kur lexoni një kod të shënuar në një objekt, mund të verifikoni që të dhënat në shënim janë të sakta, ose që formati i të dhënave është i saktë, ose që produkti i duhur po shkon përgjatë linjës së prodhimit.

Një pyetje e qartë këtu është, pse të përdoret vizioni makinerik për ta bërë këtë kur sistemet e dedikuara Auto ID do të bënin të njëjtën gjë.

Ju mund të mendoni vizionin makinerik si Auto ID ose si lexim i barkodit plus.

Plusi është aftësia për të kryer matje dhe operacione të tjera në kombinim me leximin e barkodeve ose tekstit. Për shembull, ju mund të dëshironi të lexoni një etiketë dhe gjithashtu të kontrolloni nëse është e vendosur siç duhet në produkt.

Në raste të tjera, mund t'ju duhet aftësia e një sistemi vizioni makinerik për të trajtuar aplikacione më të vështira që kërkojnë më shumë aftësi për sa i përket përpunimit paraprak të imazhit. Ose në rastin e një sistemi të bazuar në kompjuter, shpejtësia e madhe dhe fuqia përpunuese.

Një shembull i këtij lloji aplikimi është leximi i kodit OCR në një kanaçe me perime gjatë një procesi konservimi me shpejtësi të lartë.

Figura 3.19 Kanaçet me perime gjatë procesit të konservimit

Kur perimet futen në kanaçe, ato zakonisht bëhen pa etiketa. Dhe i vetmi tregues i asaj që është brenda është një kod teksti në fund të kanaçes. Kur vjen koha për të vendosur etiketën në kanaçe, një sistem vizioni kontrollon kodin në fund të kanaçes për t'u siguruar që perimet e duhura janë brenda kanaçes dhe i'a vendos etiketën përkatëse.

Figura 3.20 Gjatë kontrollimit të kodit në fund të kanaqes nga sistemi i visionit

3.3 Çfarë përfitimesh mund të sjellë vizioni makinerik në fabrika

Ju mund t'i përdorni këto mjete për të arritur një sërë qëllimesh të ndryshme. Por motivimi për ta bërë këtë është përgjithësisht si gjithë të tjerët kur jeni duke aplikuar procese industriale, për të kursyer para dhe për të rritur përfitimin.

Duke menduar në këto kushte, vizioni makinerik e realizon këtë në disa mënyra, duke reduktuar defektet, duke rritur rendimentin, duke gjurmuar pjesët dhe produktet dhe duke lehtësuar respektimin e rregulloreve.

Figura 3.21 Proceset industriale për kursimin e parave dhe rritjen e përfitimit

3.4 Katër mënyra se si vizioni makinerik mund t'i ndihmojë prodhuesit të kursejnë para

3.4.1 Reduktimi i defekteve

Inspektimi përmes vizionit makinerik mund të reduktojë defektet ose të shkaktojë atë që ne do të quajmë më pak "pasoja të rënda". Më pak pjesë me defekte shkojnë në duart e klientëve, gjë që mund të dëmtojë reputacionin e një kompanie dhe të çojë në tërheqje të kushtueshme të produkteve.
Diçka e tillë është parandalimi i produkteve të etiketuara gabimisht, pjesë ku etiketa nuk përputhet me përmbajtjen. Produktet me etiketim të gabuar krijojnë klientë të pakënaqur dhe kanë një ndikim negativ në markën e një kompanie. Ato madje mund të paraqesin një rrezik sigurie. Merrni parasysh pasojat e produkteve farmaceutike të etiketuara në mënyrë të gabuar, ose të artikujve ushqimorë të etiketuar gabimisht për klientët me alergji. Kjo është një arsye shumë e zakonshme për tërheqjet e produkteve.

Figura 3.22 Produkt me etiketim të gabuar

Vizioni makinerik mund të verifikojë përmbajtjen dhe të sigurojë që produktet janë etiketuar siç duhet.

Këtu përdoret aplikacioni për përputhjen e etiketës ku përdoret vizioni makinerik për të lexuar tekstin me tre shkronja ose kodin OCR në krye të një kutie perimesh për ta përshtatur atë me etiketën e duhur.

Figura 3.23 Gjatë verifikimit të kodit të vendosur në kanaçe nga ana e sistemit të vizionit

3.4.2 Rritja e rendimentit

Një tjetër motivim për përdorimin e vizionin makinerik është rendimenti më i mirë, thjesht aftësia për të kthyer më shumë nga materiali hyrës në produkt përfundimtar të shitshëm.

Figura 3.24 Rritja e rendimentit përmes proceseve të vizionit makinerik

Nëse i vëreni defektet herët në procesin e prodhimit, do të reduktoni mbetjet sepse pjesët me defekt mund të identifikohen dhe eliminohen përpara se të ndërtohen në montime më të mëdha. Ju do të shmangni prishjen e materialeve të shtrenjta dhe ripërpunimin e pjesëve.

Figura 3.25 Gjatë matjeve të kryera nga sistemi i vizionit në një kornizë të modifikuar plumbi

Imazhi në figurën më lartë tregon një kornizë të modifikuar plumbi. Një pjesë elektronike që sistemi i vizionit mund të matë, për të zbuluar çdo deformim. Duke zbuluar defekte në këtë fazë, do të shmanget nevoja për të çuar dëm montime më të mëdha më vonë gjatë procesit.

Visioni makinerik ndihmon në reduktimin e kohës së ndërprerjes së prodhimit. Një tjetër përfitim që hyn në këtë kategori. Për shembull, një linjë paketimi mund të përdorë një sistem vizioni për të zbuluar furnizimin jo të rregullt të produktit që mund të shkaktojë bllokimin e makinës dhe të rezultojë në ndërprerje të prodhimit dhe humbje të produktit.

Figura 3.26 Gjatë monitorimit të rreshtimit të produkteve në konvejer nga sistemi i vizionit

Në rastin që shihni në figurën më lartë, një sistem vizioni po siguron që këto produkte të jenë të rreshtuara siç duhet ndërsa udhëtojnë në një konvejer. Artikujt që janë jashtë tolerancës do të përjashtohen nga linja përpara se të shkaktojnë bllokim të sistemit.

3.4.3 Gjurmimi i pjesëve dhe produkteve

Jemi të vetëdijshëm për dobinë e gjurmimit të punës në proces. Identifikimi unik i produkteve në mënyrë që ato të mund të gjurmohen gjatë gjithë procesit të prodhimit dhe deponimit. Vizioni makinerik mund të jetë shumë i dobishëm këtu. Në mënyrë tipike, nëse mund t'i identifikoni të

gjitha pjesët në një proces, do t'ju duhet më pak stok dhe produkti bëhet më i disponueshëm për proceset në kohë.

Figura 3.27 Gjurmimi i pjesëve dhe produkteve

Vizioni makinerik përdor mjete dekodimi për të lexuar simbolet 1D dhe 2D, si dhe OCR për të gjurmuar pjesët dhe produktet. Kjo i ndihmon prodhuesit të shmangin mungesat e komponentëve, të reduktojnë inventarin dhe të shkurtojnë kohën e dorëzimit. Këtu mund të jetë i dobishëm gjithashtu aspekti Auto ID plus i vizionit makinerik. Natyrisht, aplikacione gjurmimi të tilla si ky zakonisht realizohen me lexues të dedikuar të barkodit ose imazherë. Vizioni makinerik ofron dobinë për të qenë në gjendje të kryeni detyra të tjera, të tilla si rreshtime ose matje përveç leximit të barkodeve dhe OCR. Si shembull, mund të dëshironi të lexoni një kod matricë të dhënash në një PCB dhe gjithashtu të verifikoni vendndodhjen e tij në pllakë.

Figura 3.28 Gjatë identifikimit të kodeve në një PCB nga sistemi i vizionit

3.4.4 Respektimi i rregulloreve

Respektimi i rregulloreve të industrisë është shpesh një kosto e pashmangshme. Por nëse nuk respektoni rregulloret në lidhje me një produkt të caktuar, mund të mos jeni në gjendje të merrni pjesë në atë treg. Të jesh në gjendje ta bësh këtë në mënyrë efikase dhe me kosto të ulët është e dobishme. Industria farmaceutike ishte një adoptues i hershëm i vizionit makinerik për këtë arsye. Sigurisht që është një industri shumë e rregulluar dhe kërkon respektim të rreptë të rregulloreve për të garantuar integritetin dhe sigurinë e produktit.

Një aplikacion i zakonshëm që shohim në figurën në vijim është verifikimi i numrit lot, datës, matricës së të dhënave dhe formateve të tjera të kodit. Një kërkesë për përputhshmëri me standarde të tilla si 21 CFR pjesa 11 dhe standardet e të dhënave GS1.

Figura 3.29 Gjatë verifikimit të etiketave nga sistemi i visionit

Ndryshe nga një lexues i dedikuar i barkodit, një sistem vizioni ka aftësinë jo vetëm të lexojë kodet, por të verifikojë që etiketat janë printuar me saktësi dhe janë të lexueshme, duke siguruar që ato janë të lexueshme më vonë në zinxhirin e furnizimit.

3.5 Pse ky proces i automatizuar është më i përshtatshëm për detyrat e përsëritura të inspektimit sesa inspektorët njerëzorë

Ekziston gjithashtu pyetja se pse të përdorni sisteme automatike si vizioni makinerik për të bërë gjëra që mund t'i bëni me inspektuesit njerëzorë. Përgjigja është fare e thjesht, sistemet e vizionit makinerik nuk lodhen kurrë. Ato shkëlqejnë në detyrat e përsëritura. Pasi të konfigurohen për të bërë një inspektim, do ta bëjnë çdo ditë, gjithë ditën. Ndërsa me inspektuesit njerëzorë zakonisht pritet një shkallë gabimi që rritet pas rreth 20 minutash në një detyrë të caktuar. Makinat janë më të shpejta. Ju mund t'i kontrolloni produktet më shpejt me një makinë. Dobia e madhe tjetër është qëndrueshmëria. Pasi të vendoset rregulli, ai mbetet i njëjtë. Njerëzit, të cilët janë duke inspektuar ose operuar një proces, kanë një tendencë për të ndryshuar rregullat ndërsa punojnë.

3.6 Pjesët kryesore të sistemit të vizionit makinerik

Zakonisht ekzistojnë pesë komponentë që përbëjnë një sistem të vizionit të makinerik. Ato përfshijnë ndriçimin, thjerrëzën, sensorin, përpunimin e vizionit dhe komunikimin.

Figura 3.30 Komponentët e sistemeve të vizionit të makinerik

Në figurën në vijim mund të shihni dy shembuj të llojeve të sistemeve të vizionit të makinerik.

Figura 3.31 Llojet e sistemeve të vizionit të makinerik

Në të majtë është një sistem i përbërë nga komponentë të montuar, i cili përfshin një PC dhe një kamerë së bashku me ndriçimin e jashtëm për të ndriçuar pjesën. Në të djathtë është një sistem i integruar ose kamerë e zgjuar ku të gjithë këta përbërës janë ndërtuar në një pajisje të vetme.

Zgjedhja e konfigurimit të duhur varet nga kërkesat e punës që kryhet.

Figura 3.32 Komponentët e konfigurimeve të sistemeve të vizionit të makinerik

Ndriçimi është një pjesë kritike sepse ndriçon pjesën që do të inspektohet, duke lejuar që veçoritë e saj të dallohen në mënyrë që kamera të mund t'i shohë qartë ato. Pastaj, keni thjerrëzën, e cila kap imazhin dhe ia paraqet sensorit në formën e dritës. Sensori në një kamerë të vizionit makinerik e konverton këtë dritë në një imazh dixhital, i cili pastaj dërgohet në procesor për analizë. Përpunimi i vizionit përbëhet nga algoritme që shqyrtojnë imazhin dhe nxjerrin informacionin e kërkuar. Pastaj sistemi do të ekzekutojë çfarëdo matjeje ose procesesh të tjera që është udhëzuar të ekzekutojë. Në fund, të dhënat që rezultojnë komunikohen në një mënyrë të dobishme.

Para se të hedhim një vështrim më të afërt në secilin prej këtyre komponentëve, është e rëndësishme të theksohet se vetë pjesa merret në konsideratë pra si do t'i paraqitet pjesa sistemit të vizionit. Vendosja e pjesëve dhe orientimi duhet të jetë konsistente dhe e përsëritshme për të arritur rezultatet më të mira të mundshme.

3.6.1 Ndriçimi

Ndriçimi i duhur është kritik për suksesin e një aplikimi.

Figura 3.33 Dallimet në fotografinë e marrë në bazë të ndriçimit të pjesës

Lloji dhe pozicioni i dritës duhet të zgjidhen me kujdes për të rritur kontrastin e veçorive që planifikohen të inspektohen dhe për të zvogëluar kontrastin e çdo gjëje tjetër. Më poshtë tregohen disa shembuj ku tregohet ndikimi i pozicionit të dritës.

Figura 3.34 Fotografi të poçit elektrik kur ndriçimi është e vendosur në pozicione të ndryshme

Këtu janë dy fotografi të të njëjtit poç elektrik. Dhe le të themi se objektivi është të shohim filamentin e tungstenit midis dy përçuesve.

Figura 3.35 Qartësia e objektivit në varësi të pozicionimit të ndriçimit

Në imazhin në të majtë, drita është në mes të kamerës dhe pjesës. Në të djathtë, drita është prapa pjesës larg kamerës.

Figura 3.36 Pozita e dritës në imazhin e parë dhe të dytë

Në imazhin e ndriçuar përpara në të majtë është mjaft e vështirë të shihet se ku është filamenti, ndërsa në imazhin me ndriçim të pasmë mund të shihet qartë. Në këtë rast, pozicioni i dritave është kritik.

Në figurën në vijim tregohet një shembull tjetër ku pozicioni i dritës ndikon ndjeshëm në imazh.

Figura 3.37 Qartësia e objektivit në varësi të pozicionimit të ndriçimit

Në këto imazhe, e njëjta pjesë ndriçohet me të njëjtën dritë. Në të majtë, drita vendoset pranë thjerrëzës së kamerës. Në imazhin në të djathtë, drita është e pozicionuar më poshtë dhe më afër pjesës. Kjo bën qartë një ndryshim të madh në mënyrën se si shfaqet kodi i matricës së të dhënave si dhe skica e pjesës.

Figura 3.38 Qartësia e objektivit në varësi të llojit të ndriçimit

Çifti i imazheve i treguar në figurën paraprake tregon paketimin me fletë metalike me një datë skadimi të shtypur. Drita është e pozicionuar në mes të kamerës dhe pjesës në të dy rastet, por në secilin rast përdoret një lloj tjetër drite.

Figura 3.39 Pozita e dritës në imazhin e parë dhe të dytë

Shembulli në të majtë është i ndriçuar me një dritë unazore në të cilën është e vështirë për ta lokalizuar e lëre më për të lexuar tekstin në imazh. Imazhi në të djathtë tregon të njëjtën pjesë të ndriçuar me një dritë kupolë. Te kjo figurë shihet se sa në mënyrë dramatike ndriçimi ndryshon pamjen e kësaj pjese. Në këtë rast është lloji i dritës që ndikon në imazh.

Nëse nuk mund të shihni veçorinë e nevojshme në një pjesë nuk mund ta matni ose ta lexoni ndriçimi i duhur është çelësi për të marrjen e një imazhi cilësor me karakteristika të dukshme.

3.6.2 Thjerrëza

Qëllimi i thjerrëzës është të kapë imazhin dhe ta dorëzojë atë tek sensori. Thjerrëza do të përcaktojë fushën tuaj të shikimit, thellësinë e fokusit dhe pikën tuaj fokale.

Figura 3.40 Fusha e shikimit, pika fokale dhe thellësia e fokusit

Në përgjithësi do të gjeni një nga dy llojet e ndryshme të thjerrëzave në një sistem vizioni, një thjerrëz të këmbyeshme ose një thjerrëz fikse. Thjerrëzat e këmbyeshme janë zakonisht thjerrëza me montim S ose thjerrëza me montim CS. Kombinimi i duhur i thjerrëzës dhe tubit të zgjatjes do të fitojë imazhin më të mirë të mundshëm. Një thjerrëz fikse është pjesë e një kamere inteligjente plotësisht të integruar. Thjerrëzat fikse zakonisht përdorin autofokus. Kjo mund të jetë një thjerrëz mekanikisht e rregullueshme ose edhe një thjerrëz me lëng optik, dhe automatikisht do të fokusohet te pjesa. Thjerrëzat me autofokus zakonisht kanë një fushë të caktuar shikimi në një distancë të caktuar.

Zgjedhja e thjerrëzës mund të ndikojë në mënyrë dramatike në pamjen e një imazhi. Në figurën në vijim tregohen dy shembuj që janë marrë me të njëjtën kamerë duke përdorur thjerrëza të ndryshme.

Figura 3.41 Imazhe të marra me të njëjtën kamerë duke përdorur thjerrëza të ndryshme

Imazhi në të majtë është marrë duke përdorur një thjerrëz me kënd të gjerë 12 milimetra. Kjo thjerrëz ofron një fushë shikimi më të madhe dhe më pak zmadhim sesa imazhi që shihni në të djathtë, i cili është marrë duke përdorur një thjerrëz 25 milimetërshe. Nëse përdorni një thjerrëz me një gjatësi fokale më të madhe, do ta zmadhoni imazhin dhe do të zvogëloni fushën e shikimit.

3.6.3 Sensori

Thjerrëza ia dërgon imazhin sensorit në formë të dritës.

Figura 3.42 Pamja skematike sesi thjerrëza ia dërgon imazhin sensorit

Sensori zakonisht përdor teknologjinë CCD ose CMOS për të kapur këtë dritë dhe për ta kthyer atë në një imazh dixhital.

Figura 3.43 Imazh dixhital

Kur e zmadhoni këtë imazh dixhital, mund të shihni se është një koleksion pikselësh.

Figura 3.44 Zmadhimi i imazhit paraprak

Drita me intenzitet të ulët prodhon piksel të errët ndërsa drita me intenzitet të lartë krijon pikselë më të shndritshëm.

Është e rëndësishme të siguroheni që kamera të ketë rezolucionin e duhur të sensorit për aplikimin tuaj. Në figurën në vijim tregohet një shembull i të njëjtit imazh të kapur me rezolucione të ndryshme.

Figura 3.45 Imazhi i njëjtë i kapur me rezolucione të ndryshme

Në të majtë është një imazh i kapur me një senzorë 0.3 MP i njohur gjithashtu si një senzorë VGA. Në të djathtë i njëjti imazh është kapur nga një senzorë 2 MP. Sa më i lartë të jetë rezolucioni, aq më shumë detaje do të ketë një imazh dhe për këtë arsye aq më të sakta do të jenë matjet tuaja. Madhësia e tolerancave të pjesëve tuaja dhe parametrave të tjerë të aplikimit do të diktojnë rezolucionin tuaj të duhur.

3.6.4 Përpunimi i vizionit

Funksioni i përpunimit është me të vërtetë në thelb të vizionit të makinës, ai është mekanizmi për nxjerrjen e informacionit që kërkohet nga një aplikim.

Përpunimi i imazhit mund të bëhet nga jashtë në një sistem të bazuar në kompjuter ose i integruar në një kamerë inteligjente.

Figura 3.46 Llojet e sistemeve të përpunimit të imazhit

Përpunimi i vizionit kryhet nga softuer me një shumëllojshmëri të gjerë ndërfaqesh dhe veglash në dispozicion.

Figura 3.47 Softuer për përpunimin e imazhit

Disa veglat e zakonshme softuerike të vizionit përfshijnë: lokalizimin, numërimin, matjen dhe dekodimin. Veglat përdoren shpesh në sekuencë për të arritur një rezultat të dëshiruar.

Një shembull tipik i kësaj është një aplikacion inspektimi që përdor një vegël lokalizimi për të lokalizuar një kapak në një shishe, vegla matëse më pas matë lartësinë e tij për të siguruar që ai është vendosur siç duhet në shishe.

Figura 3.48 Softueri duke lokalizuar kapakun në një shishe

Përpunimi i vizionit përbëhet nga disa hapa ose algoritme të kryera nga softueri.

Figura 3.49 Hapat e përpunimit të vizionit

Së pari, imazhi merret nga sensori. Në disa raste, mund të bëhet përpunim paraprak për të optimizuar imazhin dhe për të siguruar që të gjitha veçoritë e nevojshme të dalin në pah. Softueri më pas gjen veçoritë që supozohet të kërkojë. Kryen matjet dhe i krahason ato me specifikimet. Në fund, rezultatet e këtyre matjeve do të komunikohen si kaloj ose dështoj.

3.6.5 KOMUNIKIMI

Siç u diskutua më herët, qëllimi i vizionit makinerik është të nxjerrë informacione të dobishme nga imazhet dixhitale.

Figura 3.50 Informata të nxjerra nga imazhet e marra

Komunikimi i këtyre të dhënave është kritik. Në mënyrë tipike, kjo bëhet ose nga sinjali I/O diskret ose nga të dhënat e dërguara përmes një lidhjeje serike te një pajisje që regjistron informacionin ose e përdor atë. Shumë kamera inteligjente i kanë këto lidhje të integruara në to.

Figura 3.51 Komunikimi i të dhënave

Pikat diskrete të hyrjes/daljes mund të lidhen me një PLC që do ta përdorë atë informacion për të kontrolluar një qelizë pune ose një indikator sikurse është një dritë ose drejtpërdrejt me një solenoid që mund të përdoret për të ndezur një mekanizëm refuzimi.

Figura 3.52 Dritë me dy segmente me ngjyra e cila tregon kushte të ndryshme në makinë ose proces

Komunikimi i të dhënave me një lidhje serike mund të jetë në formën e një dalje serike konvencionale RS-232 ose Ethernet. Disa sisteme përdorin një protokoll industrial të nivelit më të lartë si Ethernet IP, i cili mund të lidhet me një pajisje si një ekran HMI (ang. Human-Machine Interface) siç tregohet këtu për të siguruar konfirmim vizual që sistemi po funksionon.

Figura 3.53 Ekran HMI

Në figurën e mëposhtme tregohet skema ku pjesët e shpjeguara më lartë punojnë së bashku për të krijuar një sistem vizioni makinerik .

Figura 3.54 Sistemi për inspektimin e nivelit të mbushjes dhe vendosjes së kapakut të shisheve të ujit

Në këtë shembull, po inspektohet nivel i mbushjes dhe vendosja e kapakut të shisheve të ujit. Procesi fillon duke u aktivizuar inspektimi kur të vijë shishja. Kjo do të aktivizojë ndriçimin për të ndriçuar shishen në mënyrë që kamera të mund të shohë qartë veçoritë e nevojshme. Më pas, thjerrëza dhe sensori do të kapin dhe krijojnë një imazh dixhital dhe do t'ia dorëzojnë procesorit, i cili në këtë rast është një PC. Platforma e softuerit që funksionon në atë PC do të nxjerrë matjet e nevojshme për të siguruar që niveli i mbushjes të jetë i saktë dhe që kapaku të jetë vendosur siç duhet në shishe. Statusi aktual i këtij procesi mund të komunikohet dhe të shihet në një ekran HMI. Në bazë të rezultateve të inspektimit mund të kryhen edhe veprime të tjera.

4. DIZAJNI, SPECIFIKIMI, HAPËSIRA E PUNËS DHE TIPARET E KRAHUT ROBOTIK

4.1 Rreth kapitullit

Ky kapitull përshkruan dizajnin, specifikimet, hapësirën e punës dhe veçoritë e robotit Dobot Magician. Dobot Magician është një krah robotik me shumë funksione me precizitet të lartë. Është projektuar në atë mënyrë që mund të shtohen efektorë të ndryshëm të fundëm që kryejnë shkrimin, 3D printimin, gdhendjen me laser dhe kapjen.[10]

4.2 Specifikimet e robotit Dobot Magician

Dobot Magician është një krah robotik me katër akse, me tre motorë me hap dhe një servo motor. Efektori i tij i fundëm i operuar nga servo motori dhe një pompë pneumatike mund të mbajë deri në 500 gram (ngarkesë) duke përdorur një kapëse ose një kupë thithëse me vakum. Tabela 4.1 përshkruan specifikimet e krahut robotik Dobot Magician. [11]

Numri i akseve	4
Ngarkesa	500g
Shtrirja maksimale	320mm
Përsëritshmëria e pozicionit (Kontrolli)	0.2 mm
Komunikimi	USB/WIFI/Bluetooth
Furnizuesi me energji elektrike	100 V-240 V, 50/60 Hz
Fuqia	12V / 7A DC
Harxhimi	60W Max
Temperatura e punuese	-10°C deri 60°C

Tabela 4.1 Specifikimet e krahut robotik Dobot Magician

4.3 Vetitë fizike të robotit Dobot Magician

Roboti Dobot Magician përbëhet nga aliazhi i aluminit 6061 dhe plastika inxhinierike ABS dhe peshon rreth 3.6 kg (krahët, kontrolleri dhe efektori i fundëm).

Tabala 4.2 Nd	örfagat a 7	Zaiomochmo	Uuröco/F)oläco
1 abela 4.2 mu	ichayci e z	Lgjeruesinne	TTYTESE/L	Jaiese

Ndërfaqet e zgjerueshme Hyrëse/Dalëse		
1	10 Hyrje/Dalje (Të konfigurueshme si hyrje analoge ose dalje PWM)	
2	4 Fuqi dalëse të kontrollueshme 12 V	
3	Ndërfaqja e komunikimit (UART, Reset, Stop, 12 V, 5 V dhe dy Hyrje/Dalje të përfshira)	
4	2 Motor me hap	

Tabela 4.3 Vetitë fizike të efektorit të fundëm

Efektorët e fundëm			
Kompleti për 3D printim	Madhësia maksimale e printimit	150 mm *150 mm *150 mm	
	Materiali	PLA	
	Rezolucioni	0.1 mm	
Lazeri	Konsumi i energjisë	500 mW	
	Lloji	405 nm (Laser i kaltër)	
	Fuqia	12 V	
Mbajtësi i stilolapsit	Diametri i stilolapsit	10 mm	
Kupa thithëse me vakum	Diametri i kupës	20 mm	
	Presioni	-35 kPa	
Kapësja	Diapazoni	27.5 mm	
	Lloji i ngasjës	Pneumatike	
	Forca	8 N	

4.4 Hapësira e punës robotit Dobot Magician

Figura 4.1 Hapësira e punës së robotit Dobot Magician

Figura 4.2 Hapësira e punës e robotit Dobot Magician

m 1 1 4 4 6	٦ ١٠٠		11 1	• , • • • • •	••	•
Tabela 4 4 (tama e le	VI71es	dhe sh	ineifesise	se nv	ieve
140014 1.1 0		, indico	and bh	pejtesise	Se IIJ.	,

Lëvizja e Aksit			
Aksi	Gama	Shpejtësi maksimale (250g ngarkesa e punës)	
Nyja 1 baza	-135° deri +135°	320° /s	
Nyja 2 krahu i pasëm	0° deri +85°	320° /s	
Nyja 3 parakrahu	-10° deri +95°	320° /s	
Nyja 4 servo rrotullimi	+90° deri -90°	480° /s	

5. KINEMATIKA E KRAHUT ROBOTIK

5.1 Rreth kaptitulllit

Në këtë kapitull, paraqitet modelimi kinematik i krahut robotik Dobot Magician. Ky kapitull përshkruan detajet e modelimit kinematik të Dobot Magician. Shënimet e modifikuara të Denavit-Hartenbergut (DH) u përdorën për të zhvilluar modelin kinematik të krahut robotik Dobot Magician.

5.2 Kinematika

Konventa e modifikuar e Denavit-Hartenbergut përdoret për zhvillimin e modelit kinematik të robotit Dobot Magician [9]. Procedura e alokimit të sistemeve koordinatave dhe përkufizimi i parametrave të DH është përmbledhur në nënkapitullin 5.2.1.

5.2.1 Procedura e alokimit të sistemeve koordinative

Ka disa mënyra të alokimit të sistemeve koordinative në hallkat e manipulatorit. Për Dobot Magician është ndjekur metoda e Denavit-Hartenbergut.

Figura 5.1 Alokimi i sistemeve koordinative

Hapat janë si më poshtë:

- duke supozuar se çdo nyje është nyje rrotulluese me 1 shkallë lirie;
- identifikimin dhe lokalizimin e akseve të rrotullimit;
- etiketimi i akseve të nyjave Z_0, \ldots, Z_n ;

• duke e gjetur origjinën e çdo sistemi koordinativ (O_i) ku ndërpritet normalja e përbashkët ndërmjet akseve të njëpasnjëshme të nyjeve (d.m.th., Z_{i-1} dhe Z_i). Nëse akset e nyjave nuk janë paralele, kërkohet të lokalizohet origjina e sistemit kordnativ në pikën e kryqëzimit midis akseve;

• gjetjen e aksit X_i (në origjinën O_i të sistemit kordnativ) të drejtuar përgjatë normales të përbashkët midis akseve Z_{i-1} dhe Z_i . Nëse akset e nyjeve kryqëzohen, X_i duhet të vendoset në drejtim normal me rrafshin që përmban të dy akset (Z_{i-1} dhe Z_i)

• vendosja e boshtit Y_i përmes origjinës O_i për të përfunduar një sistem koordinativ të djathtë.

5.2.2 Përkufizimi i parametrave D-H

Një hallkë e një roboti mund të përshkruhet nga katër parametra (dy parametra për të përshkruar vetë hallkën dhe dy të tjera për përshkrimin e marrëdhënies së hallkës me një hallkë fqinje) nëse bëjmë alokimin e sistemeve koordinative siç përshkruhet më sipër. Këta parametra njihen si parametrat e Denavit-Hartenbergut (DH).

Figura 5.2 Alokimi i sistemeve koordinative për Dobot Magician [10]

Përkufizimet e parametrave të DH janë dhënë më poshtë:

 (a_{i-1}) distanca e matur përgjatë X_{i-1} , nga aksi Z_{i-1} te aksi Z_i ;

 (α_{i-1}) këndi i matur rreth X_{i-1} , nga aksi Z_{i-1} te aksi Z_i ;

 (d_i) distanca e matur përgjatë aksit Z_i , nga X_{i-1} te aksi X_i , dhe

 (θ_i) këndi i matur rreth Z_i , nga X_{i-1} te aksi X_i

Për të llogarit parametrat e DH, ne supozojmë se sistemet e koordinatave (d.m.th., sistemet e koordinatave të hallkave që shoqërojnë akset e njëpasnjëshme të rrotullimit) përkojnë me akset e rrotullimit të nyjave dhe kanë të njëjtin rend, d.m.th., sistemi koordinativ {1} përkon me nyjen 1, sistemi koordinativ {2} me nyjen 2, e kështu me radhë.

Siç tregohet në figurën 5.2, akset e rrotullimit të nyjave të Dobot Magician që korrespondojnë me nyjën 1, nyjën 2, nyjën 3 dhe nyjën 4 tregohen me shigjeta më të errëta me origjinë të treguar nga një rreth ku rrotullimet janë rreth aksit Z (d.m.th., Z_1 , Z_2 , Z_3 dhe Z_5). Në këtë model, sistemi koordinativ {1}, {2}, {3} dhe {5} i korrespondon nyjes 1, nyjes 2, nyjes 3 dhe respektivisht nyjes 4. Nyja 1 dhe nyja 4 mundësojnë rrotullim horizontal, dhe nyja 2 dhe nyja 3 paraqesin rrotullime vertikale.

Origjina e sistemit koordinativ {2} përkon me sistemin koordinativ {1} e cila ndodhet në një distancë L1 nga baza. Distanca midis sistemit koordinativ {2} dhe sistemit koordinativ {3} është L_2 (gjatësia e krahut të pasmë) dhe distanca ndërmjet sistemit koordinativ {3} deri te sistemi koordinativ {4} është L_3 (gjatësia e krahut të përparmë). Vëreni se efektori i fundëm në Dobot Magician mbetet në pozicionin horizontal edhe pas rrotullimit vertikal të nyjës 2 dhe të nyjës 3.

Parametrat e modifikuar të DH që korrespondojnë me vendosjen e sistemeve koordinative të nyjave (në figurën 5.2) janë të përmbledhura në tabelën 5.1. Këto parametra të DH përdoren për të llogaritur matricën e transformimit homogjen, e cila përfaqëson pozicionet dhe orientimet e sistemit koordinativ të references në lidhje me sistemin koordinativ të references fiks. Supozohet se sistemi koordinativ i referencës fiks {0} ndodhet në distancën L_1 larg nga sistemi koordinativ i parë e referencës {1}.

Sistemi Koordinativ <i>(i)</i>	a _{i-1}	<i>a</i> _{<i>i</i>-1}	di	$ heta_i$
1	0°	0	L ₁	θ_{I}
2	90°	0	0	θ_2
3	0°	L_2	0	θ_3
4	0°	L_3	0	$\theta_4 = -\theta_2 - \theta_3$
5	-90°	L_4	0	θ_5
6	0°	0	-L5	0°

Tabela 5.1 Parametrat e modifikuar të DH

5.2.3 Matricat e transformimit homogjen

Ne e dimë se forma e përgjithshme e transformimit të një hallke që lidh sistemin koordinativ $\{i\}$ në lidhje me sistemin koordinativ $\{i-1\}$ është:

$${}^{i-1}_{i}T = \begin{bmatrix} {}^{i-1}_{i}R^{3x3} & {}^{i-1}_{i}P^{3\times 1} \\ {}^{0}^{1\times 3} & {}^{1} \end{bmatrix}$$
(3.1)

ku, ${}^{i-1}_{i}R$ është matrica e rrotullimit që përshkruan sistemin koordinativ $\{i\}$ në lidhje me sistemin koordinativ $\{i-1\}$ dhe mund të shprehet si:

$${}^{i-1}_{i}R = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i} & 0\\ \sin\theta_{i}\cos\alpha_{i-1} & \cos\theta_{i}\cos\alpha_{i-1} & -\sin\alpha_{i-1}\\ \sin\theta_{i}\sin\alpha_{i-1} & \cos\theta_{i}\sin\alpha_{i-1} & \cos\alpha_{i-1} \end{bmatrix}$$
(3.2)

dhe, ${}^{i-1}_i P$ është vektori që gjen origjinën e sistemit koordinativ $\{i\}$ në lidhje me sistemin koordinativ $\{i-1\}$ dhe mund të shprehet si:

$${}^{i-1}_{i}P = [a_{i-1} - \sin \alpha_{i-1} d_i \cos \alpha_{i-1} d_i]^T$$
(3.3)

Duke përdorur ekuacionet (3.1) deri te (3.3) matricën individuale homogjene të transferimit që lidh dy sisteme koordinative të njëpasnjëshme (figura 5.2), fitojmë:

$${}^{0}_{1}T = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 0\\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0\\ 0 & 0 & 1 & L_{1}\\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{1}_{2}T = \begin{bmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & 0\\ 0 & 0 & -1 & 0\\ \sin\theta_{2} & \cos\theta_{2} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}_{3}T = \begin{bmatrix} \cos\theta_{3} & -\sin\theta_{3} & 0 & L_{2}\\ \sin\theta_{3} & \cos\theta_{3} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{3}_{4}T = \begin{bmatrix} \cos\theta_{4} & -\sin\theta_{4} & 0 & L_{3}\\ \sin\theta_{4} & \cos\theta_{4} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}_{5}T = \begin{bmatrix} \cos\theta_{5} & -\sin\theta_{5} & 0 & L_{4}\\ 0 & 0 & 1 & 0\\ -\sin\theta_{5} & -\cos\theta_{5} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{5}_{6}T = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & -L_{5}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3.4)$$

Matrica homogjene e transformimit që lidh sistemin koordinativ {6} me sistemin kordiativ {0} mund të fitohet duke shumëzuar matricat individuale të transformimit.

$${}_{6}^{0}T = [{}_{1}^{0}T \cdot {}_{2}^{1}T \cdot {}_{3}^{2}T \cdot {}_{4}^{3}T \cdot {}_{5}^{4}T \cdot {}_{6}^{5}T]$$
(3.5)

Matrica e vetme e transformimit e gjetur nga ekuacioni (3.5) përfaqëson pozicionet dhe orientimet e sistemit koordinativ të referencës të bashkangjitur në kupen thithëse në lidhje me sistemin koordinativ fiks të references {0}. Pasi ta zgjidhim ekuacionin (shumëzimin e matricave) (3.5) duke përdorur ekuacionin (3.4), fitojmë:

$${}_{6}^{0}T = \begin{bmatrix} \cos(\theta_{1} + \theta_{5}) & -\sin(\theta_{1} + \theta_{5}) & 0 & \cos\theta_{1} \left(L_{4} + L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2}\right) \\ \sin(\theta_{1} + \theta_{5}) & \cos(\theta_{1} + \theta_{5}) & 0 & \sin\theta_{1} \left(L_{4} + L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2}\right) \\ 0 & 0 & 1 & L_{1} - L_{5} + L_{3}\sin(\theta_{2} + \theta_{3}) + L_{2}\sin\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.6)

Ku, ${}_{6}^{0}R$ është matrica e rrotullimit që përshkruan sistemin koordinativ {6} në lidhje me sistemin koordinativ {0}:

$${}_{6}^{0}R = \begin{bmatrix} \cos(\theta_{1} + \theta_{5}) & -\sin(\theta_{1} + \theta_{5}) & 0\\ \sin(\theta_{1} + \theta_{5}) & \cos(\theta_{1} + \theta_{5}) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(3.7)

dhe, ${}_{6}^{0}P$ është vektori që lokalizon origjinën e sistemit koordinativ {6} në lidhje me sistemin koordinativ {0}:

$${}_{6}^{0}P = \begin{bmatrix} \cos\theta_{1} \left(L_{4} + L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2} \right) \\ \sin\theta_{1} \left(L_{4} + L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2} \right) \\ L_{1} - L_{5} + L_{3}\sin(\theta_{2} + \theta_{3}) + L_{2}\sin\theta_{2} \end{bmatrix}$$
(3.8)

Pozicioni i majës së kupës thithëse (sistemi koordinativ {6}) është gjithmonë konstant në lidhje me nyjën e efektorit të fundëm deri në majën e krahut të përparmë (sistemi koordinativ {4}). Megjithatë, nëse ka ndonjë rrotullim në nyjën 4 (sistemi koordinativ {5}), vetëm orientimi i sistemit koordinativ {6} ndryshon në lidhje me sistemin koordinativ {4}. Ne mund ta përshkruajmë këtë në formë të matricës së transformimit të sistemit koordinativ {6} në lidhje me sistemin koordinativ {4} në ekuacionin (3.9),

$${}_{6}^{4}T = \begin{bmatrix} \cos\theta_{5} & -\sin\theta_{5} & 0 & L_{4} \\ 0 & 0 & 1 & -L_{5} \\ -\sin\theta_{5} & -\cos\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.9)

Ne fitojmë gjithashtu matricën e transformimit të sistemit koordinativ të kyçit {4} në lidhje me kornizën bazë {0},

$${}_{4}^{0}T = \begin{bmatrix} \cos\theta_{1} & 0 & \sin\theta_{1} & \cos\theta_{1} \left(L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2}\right) \\ \sin\theta_{1} & 0 & -\cos\theta_{1} & \sin\theta_{1} \left(L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2}\right) \\ 0 & 1 & 0 & L_{1} + L_{3}\sin(\theta_{2} + \theta_{3}) + L_{2}\sin\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.10)

Ku kolona e fundit është vektori i pozicionit të sistemit koordinativ të kyçit {4} në lidhje me sistemin koordinativ bazë {0} të cilën mund ta paraqesim si:

$${}_{4}^{0}P = \begin{bmatrix} \cos\theta_{1} \left(L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2} \right) \\ \sin\theta_{1} \left(L_{3}\cos(\theta_{2} + \theta_{3}) + L_{2}\cos\theta_{2} \right) \\ L_{1} + L_{3}\sin(\theta_{2} + \theta_{3}) + L_{2}\sin\theta_{2} \end{bmatrix} = \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix}$$
(3.11)

5.2.4 Kinematika inverse

Zgjidhja e kinematikës së inverse për një manipulator robotik është kompjuterikisht komplekse në krahasim me kinematikën e direkte. Shpesh është e vështirë të gjesh një zgjidhje në formë të mbyllur për shkak të natyrës jolineare të ekuacioneve për t'u zgjidhur. Për më tepër, një problem i kinematikës inverse për një manipulator robotik redudant është shumë më kompleks pasi jep numër të pafundëm zgjidhjesh.

Nëse kemi pozicionin dhe orientimin e dëshiruar të objektit në lidhje me bazën, mund të nënkuptojmë kinematikën inverse për të llogaritur këndet e nyjave të kërkuara për të arritur në pozicionin e dëshiruar. Zgjidhja e problemit ndahet në dy pjesë. Para së gjithash, kërkohet të bëhet transformimi i sistemeve koordinative për të fituar sistemin koordinativ të kyçit (korniza {4}). Pastaj, kinematika inverse kërkohet të zgjidhet për këndet e nyjeve.

Nëse pozicioni i dëshiruar i faqes së sipërme të një objekti (sistemi koordinativ {6}) jepet si (x, y, z) në lidhje me sistemin koordinativ bazë nga figura 6, fitojmë pozicionin e dëshiruar të sistemit koordinativ të kyçit duke përdorur transformimet e sistemeve koordinative:

$$P_x = x - L_4$$

$$P_y = y$$

$$P_z = z + L_5$$
(3.12)

Tani, ne do të shqyrtojmë dy qasje të ndryshme, algjebrike dhe gjeometrike, për të marrë pozicionin e dëshiruar të këndit të nyjes.

4.2.4.1 Zgjidhja algjebrike

Duke kujtuar të ekuacionin (3.11), fitojmë një set ekuacionesh,

$$P_x = \cos\theta_1 \left(L_3 \cos(\theta_2 + \theta_3) + L_2 \cos\theta_2 \right)$$
(3.13)

$$P_{y} = \sin \theta_1 \left(L_3 \cos(\theta_2 + \theta_3) + L_2 \cos \theta_2 \right)$$
(3.14)

$$P_{z} = L_{1} + L_{3}\sin(\theta_{2} + \theta_{3}) + L_{2}\sin\theta_{2}$$
(3.15)

Duke zgjidhur ekuacionin (3.13) dhe (3.14), fitojmë pozicionin e dëshiruar këndor (θ_1) të nyjes 1.

$$\theta_1 = \tan^{-1} \left(\frac{P_y}{P_x} \right) \tag{3.16}$$

Duke riformuluar ekuacionin (3.13) dhe (3.15), fitojmë:

$$a = \frac{P_x}{\cos \theta_1} = L_3 \cos(\theta_2 + \theta_3) + L_2 \cos \theta_2$$
(3.17)

$$b = P_z - L_1 = L_3 \sin(\theta_2 + \theta_3) + L_2 \sin\theta_2$$
(3.18)

Nga ekuacioni (3.17) dhe (3.18), fitojmë

$$a^{2} + b^{2} = L_{2}^{2} + L_{3}^{2} + 2L_{2}L_{3}\cos\theta_{3}$$
(3.19)

$$\cos\theta_3 = \frac{a^2 + b^2 - {L_2}^2 - {L_3}^2}{2L_2L_3} \tag{3.20}$$

Do të ketë një zgjidhje të ekuacionit (3.20) kur ana e djathtë e ekuacionit jep një vlerë nga -1 në 1. Objekti është jashtë hapësirës së punës së robotit nëse vlera është jashtë këtij kufizimi. Duke supozuar se objekti është në hapësirën e punës, fitojmë

$$\sin\theta_3 = \pm \sqrt{1 - \cos^2\theta_3} \tag{3.21}$$

Tani duke përdorur ekuacionin (3.20) dhe (3.21), ne llogarisim pozicionin e dëshiruar këndor (θ_3)) të nyjes 3,

$$\theta_3 = \tan^{-1} \left(\frac{\sin \theta_3}{\cos \theta_3} \right) \tag{3.22}$$

Për zgjidhjen e $\theta_2,$ ne riformulojmë ekuacionin (3.17) dhe (3.18) fitojmë

$$a = (L_3 \cos \theta_3 + L_2) \cos \theta_2 - (L_3 \sin \theta_3) \sin \theta_2$$
(3.23)

$$b = (L_3 \cos \theta_3 + L_2) \sin \theta_2 - (L_3 \sin \theta_3) \cos \theta_2$$
(3.24)

Duke riformuluar ekuacionin (3.23) dhe (3.24) fitojmë

$$a = m\cos\theta_2 - n\sin\theta_2 \tag{3.25}$$

$$b = m\sin\theta_2 - n\cos\theta_2 \tag{3.26}$$

ku

$$m = L_3 \cos \theta_3 + L_2 \tag{3.27}$$

$$n = L_3 \sin \theta_3 \tag{3.28}$$

Për të zgjidhur problemin në këtë formë, kryerja e ndryshimeve në variabël është e dobishme. Nëse

$$p = +\sqrt{m^2 + n^2}$$
(3.29)

dhe

$$\delta = \tan^{-1}\left(\frac{n}{m}\right) \tag{3.30}$$

57

$$m = p\cos\delta$$

atëherë

 $n=p\sin\delta$

Ekuacioni (3.23) dhe (3.2 shkruhen si

$$a = p\cos\delta\cos\theta_2 - p\sin\delta\sin\theta_2 \tag{3.32}$$

$$b = p\cos\delta\sin\theta_2 - p\sin\delta\cos\theta_2 \tag{3.33}$$

kështu që

$$a = p\cos(\delta + \theta_2) \tag{3.34}$$

$$b = p\sin(\delta + \theta_2) \tag{3.35}$$

Nga ekuacioni (3.34) dhe (3.35), fitojmë

$$\delta + \theta_2 = \tan^{-1}\left(\frac{b}{a}\right) \tag{3.36}$$

dhe kështu

$$\theta_2 = \tan^{-1}\left(\frac{b}{a}\right) - \tan^{-1}\left(\frac{n}{m}\right) \tag{3.37}$$

4.2.4.2 Zgjidhja gjeometrike

Gjeometrinë hapësinore të krahut do ta zbërthejmë në dy probleme të gjeometrisë planare. Së pari, do të bëjmë zgjidhjen për rrotullimet vertikale në nyjen 2 dhe nyjen 3. Më pas, do të zgjidhim rrotullimin horizontal në nyjën 1.

Figura 5.3 Gjeometria planare e rrotullimeve vertikale

Zbatimi i 'ligjit të kosinusit' për të zgjidhur për θ 3:

$$P_x^2 + P_y^2 + P_z^2 = L_2^2 + L_3^2 - 2L_2L_3\cos(180^\circ - \theta_3)$$
(3.38)

Tani, $\cos(180^\circ - \theta_3) = -\cos\theta_3$, kështu që kemi

$$\cos\theta_3 = \frac{P_x^2 + P_y^2 + P_z^2 - L_2^2 - L_3^2}{2L_2L_3}$$
(3.39)

Ekuacioni i mësipërm (3.39) është i vlefshëm kur

$$P_x^2 + P_y^2 + P_z^2 \le L_2 + L_3$$

Zgjidhja për θ_2 :

Nga figura 5.3, fitojmë

$$\beta = \tan^{-1} \left(\frac{P_z}{\sqrt{P_x^2 + P_y^2}}_{x} \right)$$
(3.40)

Zbatimi i "ligjit të kosinusit" përsëri

$$L_3^{\ 2} = L_2^{\ 2} + P_x^{\ 2} + P_y^{\ 2} + P_z^{\ 2} - 2L_2\sqrt{P_x^{\ 2} + P_y^{\ 2} + P_z^{\ 2}}\cos\psi$$
(3.41)

Prandaj,

$$\cos \psi = \frac{L_2^2 + P_x^2 + P_y^2 + P_z^2 - L_3^2}{2L_2\sqrt{P_x^2 + P_y^2 + P_z^2}}$$
(3.42)

dhe

$$\sin\psi = \pm\sqrt{1 - \cos^2\psi} \tag{3.43}$$

Nga ekuacioni (3.42) dhe (3.43) fitojmë,

$$\psi = \tan^{-1} \left(\frac{\sin \psi}{\cos \psi} \right) \tag{3.44}$$

Nga figura (5.3) fitojmë,

$$\theta_2 = \beta + \psi \tag{3.45}$$

$$\theta_{2} = tan^{-1} \left(\frac{P_{z}}{\sqrt{P_{x}^{2} + P_{y}^{2}}} \right) + tan^{-1} \left(\frac{\sin \psi}{\cos \psi} \right)$$

Figura 5.4 Gjeometria e rrafshit e rrotullimit horizontal

Tani nga figura 5.4, fitojmë rrotullimin horizontal (θ_1) për nyjën 1,

$$\theta_1 = \tan^{-1} \left(\frac{P_y}{P_x} \right) \tag{3.46}$$

6. EKSPERIMENTET

6.1 Aplikacioni DobotVisionStudio

Aplikacioni DobotVisionStudio integron komponentë të ndryshëm të algoritmit të vizionit të makinës. Ky aplikacion është krijuar për të kombinuar në mënyrë të shpejtë algoritmet për të gjetur, matur objektin, për të zbuluar defektin e kështu me radhë, të përshtatshme për një mori skenarësh aplikimi.

Aplikacioni DobotVisionStudio përmban një bibliotekë të fuqishme të veglave të analizës vizuale, të cilat mund të përdoren për të ndërtuar zgjidhje aplikacionesh të vizionit makinerik. Mund të plotësojë nevojat e aplikacioneve të vizionit si pozicionimi vizual, matja, detektimi dhe identifikimi.

DobotVisionStudio katër module: General Solution, Location & Measure, Defect Detection, dhe Recognition.

Figura 6.1 Faqja e mirëseardhjes

Faqja kryesore e softuerit shfaqet në figurën 6.2:

NR.	EMRI I FUSHËS	PËRSHKRIMI
		Funksionet përfshijnë mbledhjen e imazheve, pozicionimin, matjen, identifikimin,
1	Veglat	kalibrimin, pozicionin, përpunimin e imazhit, përpunimin e ngjyrave, zbulimin e
		defekteve, veglat logjike, komunikimin dhe funksione të tjera.
2	Rrjedha e	Këtu mund të modifikohet rriedha e zgjidhjes
zgjidhjes		
3	Imazhet	Imazhi shfaqet këtu.
4	A Rezultatet	Rezultatet aktuale, rezultatet e kaluara, parametrat e zakonshëm dhe informacioni
		ndihmës.
5	Statusi	Shfaq kohën individuale të ekzekutimit të bllokut, kohën totale të procesit dhe kohën e
Ĵ	Statusi	algoritmit.

Tabela 6.1 Përshkrimi i faqes kryesore

Figura 6.2 Dritarja e programit

Dritarja e kontrollit të krahut robotik hapet duke klikuar ikonën 🔼

Figura 6.3 Dritarja DobotStudio

6.2 Sortimi i ngjyrave

Në këtë shembull bëhet sortimi automatik i blloqeve me ngjyra të ndryshme përmes krahut robotik.

Figura 6.4 Blloqet me ngjyra

Hapat:

- Ekstraktimi i ngjyrës të sortuar në imazhin e kamerës.
- Konvertimi i koordinatave të imazhit në koordinata fizike.
- Sortimi i blloqeve të ngjyrës së specifikuar përmes krahut robotik.

Rrjedha e përgjithshme e zgjidhjes është paraqitur më poshtë.

Figura 6.5 Rrjedha e përgjithshme e zgjidhjes

Së pari shtohet blloku Camera.

Choose Camera	Hikvision MV-CE	0 0	Actual Fps	6.400	
Image Width	2592		Exposure Time	100138.000	
Image Height	1944		Trigger Source	SOFTWARE	
Fps	30.000		Pixel Format	RGB24	

Figura 6.6 Parametrat e përzgjedhur të bllokut Camera

Tek parametrat e bllokut **Camera** është përzgjedh kamera e lidhur e cila në rastin tonë është **Hikvision MV-CEO**, është vendosur formati i pikselëve **RGB24** meqenëse qëllimi është sortimi i ngjyrave dhe është caktuar softueri si aktivizues për të fillimin e kapjes së fotografive nga kamera e lidhur. Është rregulluar ndriçimi i kamerës duke rregulluar aperturën, kohën e ekspozimit dhe dritën.

Figura 6.7 Pamja e marrë nga kamera pas përzgjedhjes së parametrave

Figura 6.8 Vlerat RGB

Shtohet blloku **Color Extraction**. Te ky bllok vendoset **Color Space** në **RGB** dhe nga imazhi janë marrë vlerat minimale dhe maksimale të ngjyrave me qëllim të plotësohet dritarja e bllokut e paraqitur tek Figura 6.9. Vlerat e minimale dhe maksimale për ngjyrën e kuqe të gjelbërt dhe të kaltër merren duke e lëvizur miun nëpër bllok. Këto vlera tregohen në këndin e poshtëm të djathtë të faqes siç tregohen tek Figura 6.8.

1 C	olor Extractio	on					×
E	Basic Params	Run Params		Result Show	N		
R	un Params						
	Color Spac	e	[RGB			
	Channel 1	Lower Limit	2	55		÷	
ĸ	Channel 1	Upper Limit	2	55		* *	
G	Channel 2	Lower Limit	6)		÷	
Ĭ	Channel 2	Upper Limit	7	5		÷	
	Channel 3	Lower Limit	6	D		÷	
в	Channel 3	Upper Limit	9	0		*	
					Execute	Confir	m

Figura 6.9 Vendosja e ngjyrës

Figura 6.10 Imazhi pas ekzekututimit të bllokut Color Extraction

Shtohet blloku Image Morph.

2 Image Morph			×
Basic Params	Run Params	Result Show	
Run Params			
Morpholog	ју Туре	Erosion	
Structuring	Element	Ellipse	
Iteration Ti	mes	3	*
Kernel Wid	th	3	*
Kernel Heig	ght	3	*
		_	

Figura 6.11 Parametrat e përzgjedhur të bllokut Image Morph

Te blloku i shtuar lloji i morfologjisë është vendos në **Erosion**. Ky lloj i morfologjisë largon piksel nga kufijtë e objektit, numri i pikselëve të larguar varet nga elementi strukturës i përdorur, në ketë rast elementi strukturës është përzgjedh elipsa. [6]

Figura 6.12 Imazhi pas ekzekutimit të bllokut Image Morph

Shtohet blloku **BLOB**. Ky bllok ofron informacione rreth veçorive të caktuara të objektit të targetuar në imazh, të tilla si prania, sasia, pozicioni, forma, orientimi dhe lidhja topologjike midis blobeve.[7]

Figura 6.13 Imazhi dhe informacionet e nxjerra pas ekzekutimit të bllokut BLOB

Shtohet blloku **Calibration Transformation**. Ky bllok përdoret për të realizuar transformimin nga koordinatat e imazhit në koordinata fizike duke përdorur faktorin e kalibrimit. [8]

4 Calib Transform	mation			×
Basic Params	Result Show			
Input Source	ce	3 BLOB.BinaryImage		
Image Coord	Input			
Input Mode		O By Point		
		💿 By Coordinate		
Image Coo	rdinate X	3 BLOB.CentroidX[]	P	
Image Coo	rdinate Y	3 BLOB.CentroidY[]	P	
Align File				
Load Calibration File			Þ	
		Execute	Confi	rm

Figura 6.14 Parametrat e përzgjedhur te dritarja e bllokut Calibration Transformation

Në këtë bllok duhet të shtohet fajlli i kalibrimit tek pjesa **Load Calibration File**. Si krijohet ky fajll do te tregohet tek Shtojca 1.

🙆 Open					×
$\leftarrow \rightarrow \cdot \uparrow$	Maxtor (E:) > 1 > Shenimet > 4. Kali	brimi »	✓ Ö Search 4.	. Kalibrimi	<i>م</i>
Organize 🔻	New folder				?
🧊 3D i ^	Name	Date modified	Туре	Size	
📃 Des	1	10/13/2021 1:16 PM	File folder		
🔮 Doc	kalibrimi 13 tetor.iwcal	10/13/2021 1:17 PM	IWCAL File	1 KB	
🕹 Dον					
🁌 Mu					
Pict					
	File name: kalibrimi 13 tetor.iwcal		 ✓ Calib Fil 	e (*.iwcal)	\sim
	L		Ор	en Canc	el

Figura 6.15 Shtimi i fajllit të kalibrimit

Pas ekzekutimit të bllokut **Calibration Transformation** fitohen koordinatat fizike të qendrës së bllokut të detektuar, këto koordinata shihen në figurën më poshtë.

Figura 6.16 Koordinatat fizike të qendrës së bllokut të detektuar pas ekzekutimit të bllokut

Calibration Transformation

Shtohet blloku **Move Point**. Tek **Move Mode** kemi zgjedhur opsionin **Jump** dhe forma sesi ekzekutohet paraqitet në figurën në vijim. Pika **A** për neve paraqet piken fillestare të robotit ndërsa pika **B** paraqet qendrën e objektit të detektuar (kubit të kuq).

Figura 6.17 Lloji i lëvizjes Jump

Blloku **Move Point** plotësohet me koordinatat fizike të qendrës së bllokut të detektuar të fituara nga blloku **Calibration Transformation**. **R** paraqet rrotullimin e efektorit të fundëm, meqenëse nuk na duhet rrotullimi i efektorit të fundëm vlera për **R** vendoset **0**.

5 Move Point		× 5 Move Point	>	×
Basic Params	ResultShow	Basic Params	ResultShow	
Input Params		Input Params		
Move Mode	JUMP	Move Mode	JUMP	
Х	đ	Р Х	4 Calib Transformation 🔗	
Y	A 2 Image Morph	Y	4 Calib Transformation 🔗	
Z	▲ 3 BLOB	Z		
R	✓ 4 Calib Transformatic✓ OutputPoint	R		
	WorldPointX	•	WorldPointY	
	WorldPointV		PixelScale	
	Execute	Confirm	<	

Figura 6.18 Zgjedhja e opsioneve me koordinatat fizike përkatëse

Me qëllim që të merret vlera e lartësisë së objektit nga bazamenti vendoset efektori i fundëm i robotit në pozitën si në figurën më poshtë.

Figura 6.19 Efektori i fundëm në pozitën mbi kub me qëllim që të merret vlera e lartësisë kubit nga bazamenti

Vlera e lartësisë së objektit është statike, kjo vlerë merret nga dritarja **Dobot studio** e cila në kohë reale tregon koordinatat e efektorit të fundëm të krahut robotik. Plotësohet koordinata **Z** me këtë vlerë si në figurën më poshtë:

			DobotStudio	Console Log	English 💽 🗙
			Magician COM3	SuctionCup 🐨	ClearAlarm Home
5 Move Point		×	x 7.1161		
Basic Params	ResultShow		Y 248,1720	Y+	Z+
Input Params			7 -40.9920	x+ - x-	R+
Move Mode	JUMP			¥-	Z-
х	4 Calib Transformation	60			
Y	4 Calib Transformation	-	Joint1 88.3575		
Z	-40.9920	ø	Joint2 52.7896		
R	0	P	Joint3 56.5362	J4 + () J4 -	J2 + J2 -
			Joint4 -88.3575	Jt +	J3+
			L 0.0000	2 L+	
	Execute	Confirm	Speed	u.	
			Forbid Gripp	er 🕝 SuctionCup 🕝 Laser	Motor(M1)
			Dobot params Setting		
	Current Result	History Help	Joint Velocity:	Joint	Acceleration:
			XYZ Velocity: 200	XYZ	Acceleration: 200
			2 Limit: 100		OK
	0 1.000				OK

Figura 6.20 Plotësimi i dritares Move Point me koordinaten Z të robotit

Nëse ekzekutohet programi në këtë pikë krahu robotik lëviz prej pikës së tij fillestare deri tek pozita e kubit te kuq. Për ta kapur këtë kub e shtojmë bllokun **Suction Cup**. Tek ky bllok përzgjedhet opsioni **On**. Në këtë formë kur kupa thithëse i ofrohet kubit krijohet presion rreth - 35 kPa nga pompa e cila e thith ajrin në kupë.

6 SucitonCup				×
Basic Params	ResultShow			
Input Params				
ON/CLOSE		On		
			Execute	Confirm

Figura 6.21 Parametrat e zgjedhur tek blloku Suction Cup për aktivizimin e pompës

Shtojmë edhe një bllok **Move Point**. Tani e vendosim efektorin e fundëm të robotit në një pikë ku dëshirojmë ti vendosim kubat ne ngjyrë të kuqe dhe merren koordinatat e asaj pike me të cilat plotësohet blloku **Move point**.

Figura 6.22 Bartja e vlerave të koordinatës **X**,**Y** dhe **Z** të robotit tek dritarja **Move Point**

Tani shtojmë bllokun **Suction Cup**. Tek ky bllok përzgjedhet opsioni **Close**. Me këtë komandë kur roboti e arrin pozitën me koordinatat e bllokut paraprak fikët pompa e ajrit dhe lëshohet kubi.

8 SucitonCup	;	×
Basic Params	ResultShow	
Input Params		
ON/CLOSE	Close	
	Execute Confirm	

Figura 6.23 Parametrat e zgjedhur tek blloku Suction Cup për ta lëshuar kubin

Figura 6.24 Gjatë testimit të programit.

6.3 Detektimi i defekteve të karaktereve

Në këtë shembull, bëhet sortimi automatik i objekteve me defekte dhe atyre pa defekte përmes krahut robotik.

Figura 6.25 Objektet e përdorura te shembulli detektimi i defekteve të karaktereve

Hapat:

- Krijimi i shabllonit të karaktereve standarde dhe trajnimi i tyre. Krahasimi i karaktereve të trajnuara me karakteret e targetuara për të gjetur defekte.
- Analizimi i rezultatit për të sortuar karakteret me anë të krahut robotik.

Rrjedha e përgjithshme e zgjidhjes është paraqitur më poshtë.

Figura 6.26 Rrjedha e përgjithshme e zgjidhjes

Së pari shtohet blloku Camera.

Image Width 2592 Exposure Time 101186.000 Image Height 1944 Trigger Source SOFTWARE Fps 1.000 Pixel Format MONO8 	Choose Camera	Hikvision MV-CE	0 🖌 🕝	Actual Fps	1.000	
Image Height 1944 Trigger Source SOFTWARE Fps 1.000 Pixel Format MONO8	Image Width	2592	\$	Exposure Time	101186.000	\$
Fps 1.000 + Pixel Format MONO8	Image Height	1944	¢	Trigger Source	SOFTWARE	4
	Fps	1.000	\$	Pixel Format	MONO8	4

Figura 6.27 Parametrat e përzgjedhur të bllokut Camera

Tek parametrat e bllokut **Camera** është përzgjedh kamera e lidhur e cila në rastin tonë është **Hikvision MV-CEO**, është vendosur formati i pikselëve **MONO8** dhe është caktuar softueri si aktivizues për të fillimin e kapjes së fotografive nga kamera e lidhur. Është rregulluar ndriçimi i kamerës duke rregulluar aperturën, kohën e ekspozimit dhe dritën.

Figura 6.28 Pamja e marrë nga kamera pas përzgjedhjes së parametrave

Shtohet blloku **Fast Match**. Ky bllok përdor kufijtë e imazhit si model. Këta kufij formohen në mes regjioneve ku paraqitet dallim i madh në vlerat e pikselëve të imazhit. Ky bllok gjithashtu konfirmon hapësirën e kërkimit në përputhje me parametrat e vendosur paraprakisht dhe kërkon objektivë që janë të ngjashëm me modelin mes imazheve. Kjo vegël mund të përdoret për të gjetur, llogaritur dhe verifikuar.

Figura 6.29 Dritarja Feature Template e bllokut Fast Match

Përmes dritares **ModelSettings** e cila hapet duke kliku **• Create** tek dritarja më lartë krijohet modeli.

Figura 6.30 Dritarja ModelSettings

Pas ekzekutimit të programit ky bllok tregon numrin, koordinatat, këndin dhe shkallën e përputhshmërisë së objekteve me modelin e krijuar më sipër. Kjo tregohet në figurën më poshtë.

Figura 6.31 Blloku **Fast Match** - Numri, koordinatat, këndi dhe shkalla e përputhshmërisë së objektit në imazhin e marr nga kamera dhe modelit të krijuar

Korrigjimi i pozicionit:

Shtohet blloku **Positon Correction**. Te ky bllok si koordinat hyrëse janë koordinatat x,y të qendrës së objektit të detektuar nga blloku **Fast Match** dhe këndi hyrës është këndi në të cilin ndodhet objekti i detektuar. Nga këto të dhëna hyrëse krijohet pika fiduciale siç tregohet në figurën më poshtë.

2 Position Correction Basic Params Result Sho	w	<	D	etection		>
Image Input						
Input Source	0 Camera.ImageData			×		
Position Correction			🕢 Tips			
	💿 By Point		Fiducial point crea	ted !		
Choose Mode	O By Coordinate		Apply			
Origin	1 Fast Match.Match Po 🔗					
Angle	1 Fast Match.MatchBo	1 Fast Match.	Match Point[]		X,0062 Y	,0392 R:010 G:010 B:010
create Reference	create Reference	1 Fast Match.	MatchBoxAngle[]			
	Everyte	No.		Module Data		
	Execute	1	2021-10-06 14:21:58	BasePoint:(1015.669,1034.720) Running	Point:(1015.669,1034.720)	

Figura 6.32 Krijimi i pikës fiduciale

BasePoint paraqet koordinatat **x**, **y** të fituara pas krijimit të pikës fiduciale dhe vlera e **BasePoint** nuk ndërron derisa të krijohet një tjetër referencë. **RunningPoint** paraqet koordinatat **x**, **y** të objektit të detektuar. Krahasimi i **BasePoint** me **RunningPoint** jep devijimin e pikselëve.

Detektimi i defektit:

Shtohet blloku **OCV**. Blloku **OCV** krahason imazhin e targetuar me imazhin standard për të detektuar nëse karakteret dhe modelet (dizajnet) e printuara kanë defekte si karaktere që mungojnë ose karaktere të tepërta.

Së pari te ky bllok selektohet zona e interesit **ROI**, e cila në rastin tonë është objekti me shënimin "Detection" dhe aktivizohet opsioni për korrigjimin e pozitës përmes pikës si më poshtë.

Figura 6.33 Parametrat bazik të bllokut OCV

Detektimi i defektit është një proces që krahason imazhin e targetuar me imazhin standard, dhe kështu imazhet standarde duhet të trajnohen përpara detektimit të defektit. Procesi specifik tregohet më poshtë.

Përmes klikimit të butonit + Create Model të treguar në figurën në vijim hapet dritarja e cila shërben për nxjerrjen e karaktereve.

Figura 6.34 Krijimi i modelit të karaktereve

Në dritaret më poshtë paraqiten modelet e karaktereve të gjeneruara.

Figura 6.35 Modelet e karaktereve të gjeneruara nga blloku OCV

Pas ekzekutimit të programit bëhet detektimi i karaktereve si më poshtë.

Figura 6.36 Detektimi i defekteve të karaktereve pas ekzekutimit të programit

Krijohet edhe një bllok tjetër OCV me të njëjtat parametra.

Figura 6.37 Modelet e karaktereve të gjeneruara të bllokut OCV të dytë

Shtohet blloku Image Morph.

5 Image Morph	×	5 Image Morph			×
Basic Params Run	I Params Result Show	Basic Params	Run Params	Result Show	
Image Input		Run Params			
Input Source	4 OCV.FlawBinaryImage	Morpholog	ју Туре	Opening	
ROI Area		Structuring	Element	Ellipse	
ROI Creation	💿 Draw 🔵 Inherit	Iteration Ti	mes	1	*
		Kernel Wid	th	5	*
Shape	\bigcirc	Kernel Heig	ght	5	*
Mask Region	Ø				
Position Correction	on 📃				
	Execute Confirm			E	cecute Confirm

Figura 6.38 Parametrat e zgjedhur të bllokut Image Morph

Pas ekzekutimit të bllokut tek imazhi ka pamje të zezë sepse te objekti i detektuar nuk ka defekte, këtë e shohim në figurën më poshtë.

-				
<				>
1888				
			X 0363 V	0008 R-207 G-207 R-207
History	Help		X,0303 I	
No.				
1				

Figura 6.39 Pamja pas ekzekutimit të bllokut Image Morph

Blob analiza:

Shtohet blloku **BLOB**. Blob analiza është një proces i detektimit, gjetjes ose analizimit të një objekti të targetuar në një imazh në shkallë gri [9]. Një imazh i tillë tregohet tek figura në vijim.

Figura 6.40 Imazh në shkallë gri

Blloku **BLOB** ofron informacione rreth veçorive të caktuara të objektit të targetuar në imazh, të tilla si prania, sasia, pozicioni, forma, orientimi dhe lidhja topologjike midis blobeve.

Figura 6.41 Parametrat e përzgjedhur te blloku BLOB

Rezultati pas ekzekutimit të programit është siç tregohet në figurën më poshtë sepse objekti i detektuar nuk ka defekte.

Figura 6.42 Rezultati pas ekzekutimit të bllokut BLOB

Konvertimi i koordinatave të imazhit në koordinata fizike:

Pas përfundimit të kalibrimit i cili shpjegohet në pjesën Shtojca 1, konvertimi midis sistemit të koordinatave të kamerës dhe sistemit të koordinatave të krahut robotik mund të realizohet përmes bllokut **Calibration Transformation**. Si koordinata hyrëse merren koordinatat e qendrës së objektit të detektuar.

Calib Transformation		×
Basic Params Result Sho	w	
Image Input		
Input Source	0 Camera.ImageData	
Image Coord Input		
Input Mode	💿 By Point	
input mode	O By Coordinate	
Image Point	2 Position Correction.L 🔗	2 Position Correction.Unfixtured Point[
Align File		
Load Calibration File	E:\1\Shenimet\4. Kalibriı 🗁	
	Execute Conf	firm

Figura 6.43 Parametrat e bllokut Calibration Transformation

Në figurën në vijim shohim vlerën e koordinatave fizike të objektit të detektuar të fituara pas ekzekutimit të bllokut **Calibration Transformation**.

Figura 6.44 Blloku **Calibration Transformation** -Vlera e koordinatave fizike të objektit të detektuar

Lëvizja e krahut robotik për te qendra e objektit të detektuar:

Shtohet blloku **Move Point**. Ky bllok plotësohet me koordinatat fizike (**x**,**y**) të qendrës së objektit të detektuar të fituar më lartë nga veprimi i bllokut **Calibration Transformation**. Ndërsa vlera e koordinatës **z** ose lartësisë së objektit është statike, kjo vlerë merret nga dritarja **DobotStudio** e cila në kohë reale tregon koordinatat e efektorit të fundëm të krahut robotik.

Figura 6.45 Marrja e vlerës së koordinatës fizike ${f Z}$

Figura 6.46 Parametrat e bllokut Move Point

Nëse ekzekutohet programi në këtë pikë krahu robotik lëviz prej pikës së tij fillestare deri tek pozita e objektit të detektuar. Për ta kapur këtë objekt e shtojmë bllokun **Suction Cup**. Tek ky bllok përzgjedhet opsioni **On**.

6 SucitonCup	×
Basic Params	ResultShow
Input Params	
ON/CLOSE	On
	Execute Confirm

Figura 6.47 Parametrat e zgjedhur tek blloku Suction Cup

Kushti:

Shtohet blloku If Module. Dhe kushtet e treguara në figurën më poshtë:

- Numri i defekteve të detektuara nga blloku OCV tek objekti i detektuar të jetë 0.
- Numri i BLOB-eve nga blloku **BLOB** të jetë 0.

Blloku jep rezultatin OK nëse plotësohen kushtet e shtuara,

10 If Module	×						
Basic Params	Result Show						
Judge Method All Condition Conforming, The Result is OK							
Condition	ed Valid Value Range						
3 OCV.FlawNu	m[] 🔗 0.000 💠 — 0.000 💠 🛞						
6 BLOB.BlobN	um[] 🔗 0.000 💠 — 0.000 💠 🛞						
int 📕 🕂							
	Execute Confirm						

Figura 6.48 Blloku **If Module**

Shtohet blloku Branch.

		~
Input Params		
Condition Input	10 If Module.nlfResult[🤗	10 If Module.nlfResult[]
Branch Params		
 Index by Value 	O Index by Bit	
Branch	Condition Input Value	

Figura 6.49 Blloku Branch

Te blloku **Branch** shtohen dy degëzime.

Degëzimi i parë:

Shtohet blloku **Move Point**. Përmes dritares **DobotStudio** vendoset roboti në një pozitë ku dëshirojmë të vendosen objektet e detektuara **pa defekte**, dhe i bartim koordinatat (**x**, **y**, **z**) e kësaj pozite në bllokun **Move Point**.

$\begin{array}{c} 0 \text{ Camera} \\ 1 \text{ Fast Mat.} \\ 2 \text{ Position} \\ \end{array}$					0000				
10 If Modul $1 Fast Mat.$ $2 Position$ $2 Position$ $11 Branch$ $11 Branch$ $11 Branch$ $12 Move P$ $12 Move P$ $12 Move P$ $12 Move P$ $R = 0.5 502$ $R = 0.5 50$	0 Camera					DobotStudio	Console Log	English 💽 🗙	5
$\frac{2 \text{ Position}}{30 \text{ CV}} 4 \text{ OCV}$ $\frac{11 \text{ Branch}}{12 \text{ Move P.i.}}$ $\frac{11 \text{ Branch}}{12 \text{ Move P.i.}}$ $\frac{11 \text{ Branch}}{12 \text{ Move P.i.}}$ $\frac{12 \text{ Move P.i.}}{12 \text{ Move P.i.}}$ $12 \text{ M$	1 Fast Mat	10 If Modul				Magician COM3 COM3	ect SuctionCup 💌	ClearAlarm Home	
3 OCV 4 OCV 5 Image 12 Move Point X Basic Params ResultShow 3 ort 3 ort 1 arrow	2 Position	11 Branch		8		X 139.5612 Y 278.7780	Y+ X+ y X-	Z+ R+ 2 ² R-	l
12 Move Point X Joint 63.066 Ji-	30CV 40CV	12 Move P				Z -32.7862 R -25.5002	¥-	Z-	
Simage Basic Params ResultShow Joint2 70.5009 J1- J3- 10112 70.5009 J4- 12+ 30012 72- 12+ 30012 12- 12+ 30012 12-		12 Move Point		× // ×		Joint1 63.4066			
	5 Image	Basic Params ResultShow				Joint2 70.5509		J3-	
Input Params Joint 3 31.9299		Input Params				Joint3 31.9259		J2 + J2 -	
6BL0B Move Mode JUMP	6BLOB	Move Mode	JUMP			Joint4 -88.9069	J1+	J3 +	R
X 139.5612		X	139.5612						ł
Y 278.7780 2		Y	278.7780						5
7Calib Tr Z -32.7862 - 2	7 Calib Tr	Z	-32.7862			speed	ш		8
R O O		R	0 8			Forbid Gripper	SuctionCup Laser	Motor(M1)	R
8 Move P	8 Move P					Joint Velocity:	loir	Acceleration:	(,0
Current Rest XYZ Velocity: 200 XYZ Acceleration: 200				Cu	irrent Resi	XYZ Velocity: 200	XY	Acceleration: 200	
9 Suciton Z Limit: 100 Jump High: 20	9 Suciton		Execute Confirm			Z Limit: 100		Jump High: 20	
No. Re					NO. Re			ОК	

Figura 6.50 Caktimi i pozitës ku vendosen objektet e detektuara pa defekte

Nën bllokun paraprak shtojmë bllokun **Suction Cup**. Tek ky bllok përzgjidhet opsioni **Close**. Me këtë komandë kur efektori i fundëm i krahut robotik e arrin pozitën me koordinatat e bllokut paraprak fikët pompa e ajrit dhe lëshohet objekti.

13 SucitonCup		×
Basic Params	ResultShow	
Input Params		
ON/CLOSE	Close	
	Execute Confirm	n

Figura 6.51 Parametrat e zgjedhur tek blloku Suction Cup për ta lëshuar objektin

Degëzimi i dytë:

Shtohet blloku **Move Point**. Vendoset roboti me anën e dritares **DobotStudio** në një pozitë ku dëshirojmë të vendosen objektet e detektuara **me defekte**, dhe i bartim koordinatat (**x**, **y**, **z**) të kësaj pozite në bllokun **Move Point**.

nput Params		
Move Mode	JUMP	
Х	139.5614	P
Υ	181.2427	P
Z	-32.7855	P
R	0	C

Figura 6.52 Caktimi i pozitës ku vendosen objektet e detektuara me defekte

Nën bllokun paraprak shtojmë bllokun **Suction Cup**. Tek ky bllok përzgjidhet opsioni **Close**. Me këtë komandë kur roboti e arrin pozitën me koordinatat e bllokut paraprak fikët pompa e ajrit dhe lëshohet objekti.

15 SucitonCup				×
Basic Params	ResultShow			
Input Params				
ON/CLOSE		Close		
			Execute	Confirm

Figura 6.53 Parametrat e zgjedhur tek blloku Suction Cup për ta lëshuar objektin

Kthehemi tek blloku **Branch** i krijuar më parë. Tek degëzimi i parë i cili është krijuar për objektet pa defekt i vendoset vlera 1. Ndërsa tek degëzimi i dytë i krijuar për objektet me defekt vendoset vlera 0.

11 Branch	×
Input Params	
Condition Input	10 If Module.nlfResult[🥜
Branch Params	
 Index by Value 	O Index by Bit
Branch	Condition Input Value
12	1
14	0
	Execute Confirm

Figura 6.54 Caktimi i degës që ekzekutohet kur pjesa është pa defekt dhe e anasjellta

Kur te blloku **IF Modul** përmbushen kushtet vlera dalëse e këtij blloku do të jetë 1 dhe do të ekzekutohet degëzimi i parë ndërsa nëse nuk përmbushen kushtet do të ekzekutohet degëzimi i dytë.

Testimi i programit:

Në figurat në vijim tregohen rezultatet e blloqeve në rastin kur pjesa e detektuar ka defekte.

Figura 6.55 Blloku **Fast Match** (Numri, koordinatat, këndi dhe shkalla e përputhshmërisë së objektit në imazhin e marr nga kamera dhe modelit të krijuar)

Figura 6.56 Blloku Positon Correction (Vlera e BasePoint dhe RunningPoint)

<	De	ete	90	ti	on
Current	Result History	Help			X,0010 Y,0167 R:000 G:000 B:00
No.	FlawBoxCenterX	FlawBoxCenterY	FlawBoxWidth	FlawBoxHeight	FlawBoxAngle
	297.000	97.500	14.000	11.000	90.000

Figura 6.57 Blloku OCV (Defektet e detektuara të karaktereve)

Figura 6.58 Blloku Image Morph (Defektet e detektuara të karaktereve)

Figura 6.59 Blloku **BLOB** (Prania, sasia, pozicioni, forma, orientimi dhe lidhja topologjike

midis BLOB-eve)

Figura 6.60 Blloku **Calibration Transformation** (Koordinatat fizike të qendrës së objektit të detektuar)

No.	Time	Module Data	
10	2021-10-06 17:46:58	Module Status:1Result:NG	

Figura 6.61 Blloku **If Module** (Nuk plotësohet kushti = Pjesa me defekte)

Në figurat në vijim tregohen rezultatet e blloqeve në rastin kur pjesa e detektuar është **pa defekte.**

Figura 6.62 Blloku **Fast Match** (Numri, koordinatat, këndi dhe shkalla e përputhshmërisë së objektit në imazhin e marr nga kamera dhe modelit të krijuar)

Figura 6.63 Blloku Positon Correction (Vlera e BasePoint dhe RunningPoint)

Figura 6.64 Blloku OCV (Defektet e detektuara të karaktereve)

Figura 6.65 Blloku Image Morph (Defektet e detektuara të karaktereve)

Figura 6.66 Blloku **BLOB** (Prania, sasia, pozicioni, forma, orientimi dhe lidhja topologjike

midis BLOB-eve)

Figura 6.67 Blloku **Calibration Transformation** (Koordinatat fizike të qendrës së objektit të detektuar)

Figura 6.68 Blloku If Module (Plotësohet kushti = Pjesa pa defekte)

6.4 Matja dhe sortimi

Në këtë shembull, bëhet sortimi automatik i objekteve në formë të rrumbullakët sipas madhësisë përmes krahut robotik.

Figura 6.69 Objektet në formë të rrumbullakët të përdorura

Hapat:

- Gjetja e objekteve të matura në formë të rrumbullakët.
- Konvertimi i madhësisë së imazhit në madhësi fizike.
- Konvertimi i koordinatave të imazhit në koordinata fizike.
- Sortimi i objekteve në formë të rrumbullakët nga krahu robotik.

Rrjedha e përgjithshme e zgjidhjes është paraqitur në figurën në vijim.

Figura 6.70 Rrjedha e përgjithshme e zgjidhjes

Shtohet blloku **Camera** dhe përzgjidhen parametrat e saj.

Figura 6.71 Parametrat e përzgjedhur të bllokut Camera

Shtohet blloku **Find Circle** i cili shërben për detektimin dhe matjen e objekteve në formë rethore. Tek pjesa **Radius** vendoset rangu i vlerave minimale dhe maksimale të objekteve që priten të detektohen.

1 Find Circle			×	Radius:250.258		2592 * 1944
Basic Params	Run Params	Result Show				
Run Params						
Radius Range		100 🗘 — 1000	÷			
Search Mode		Max Contrast		< Contraction of the second se	30mm	
Edge Polarity		Any		Measure		
Contrast Threshold		15	÷			
Filter Size		1	÷			
Caliper Number		30	*			
Number to	Ignore	5	*	Current Result History	Help	X,0564 Y,1881 R.021 G.021 B.021
		Advanced Param	- V			
		Evecute	Confirm	No. centerx centery		
		Execute	comm	0 1157.322 1014.586		

Figura 6.72 Parametrat e bllokut Find Circle

Blloku **Scale Transformation** përdoret për konvertimin e njësive të pikselit si distanca dhe gjerësia në njësi fizike. Tek intervali i pikselëve përzgjidhet rrezja e rrethit të detektuar nga blloku **Find Circle,** ndërsa tek ky bllok gjithashtu shtohet edhe fajlli i kalibrimit i krijuar më parë. Pas ekzekutimit të programit fitojmë vlerën e rrezes së rrethit të detektuar të treguar si në figurën më poshtë.

Figura 6.73 Parametrat e bllokut **Scale Transformation** dhe vlera e rrezes së rrethit të detektuar
Konvertimi midis sistemit të koordinatave të kamerës dhe sistemit të koordinatave të krahut robotik mund të realizohet nga moduli i **Calibration Transformation**. Tek **Image Point** përzgjedhet qendra e rrethit të detektuar nga blloku **Find Circle**, edhe tek ky bllok shtohet fajlli i kalibrimit i krijuar më parë. Pas ekzekutimit të programit fitohet vlera e koordinatave fizike të qendrës së rrethit të detektuar.

Figura 6.74 Parametrat e bllokut **Calibration Transformation** dhe koordinatat e qendrës së rrethit të detektuar

Lëvizja e krahut robotik për te qendra e objektit të detektuar bëhet përmes bllokut **Move Point**. Tek parametrat e këtij blloku koordinata **x** dhe **y** vendosen koordinatat fizike të qendrës së rrethit të detektuar e marra nga blloku Calibration Transformation.

Basic Params Resul	ItShow		
Input Params			
Move Mode	JUMP		
х	3 Calib Transfo	nation 🔗 3 Calib Transform	nation.WorldPointX[]
Y	3 Calib Transfor	mation of 3 Calib Transform	ation.WorldPointY[]
Z	-59.5208	P	
R	0	8	

Figura 6.75 Parametrat e bllokut Move Point

Për ta kapur këtë objekt e shtojmë bllokun Suction Cup. Tek ky bllok përzgjidhet opsioni On.

5 SucitonCup				×
Basic Params	ResultShow			
Input Params				
ON/CLOSE		On		
			Execute	Confirm

Figura 6.76 Parametrat e zgjedhur tek blloku Suction Cup

Kushti:

Shtohet blloku If Module, me kushtin:

• Rrezja e rrethit të detektuar të ndodhet mes 15 dhe 30mm.

Blloku jep rezultatin **OK** nëse plotësohet kushti i vendosur.

Figura 6.77 Blloku If Module

Shtohet blloku Branch.

Input Params	
Condition Input	6 If Module.nlfResult[] 🥜
Branch Params	
Index by Value	O Index by Bit
Branch	Condition Input Value
8	1
10	0

Figura 6.78 Parametrat e përzgjedhur te blloku Branch

Nën bllokun **Branch** shtohen dy degëzime.

Tek parametrat e bllokut Branch në figurën paraprake është caktuar se nëse **përmbushet** kushti do të ekzekutohen blloqet nga **degëzimi i parë**, kurse nëse **nuk plotësohet** kushti do të ekzekutohet **degëzimi i dytë**. Këto blloqe tregohen në figurat më poshtë.

Basic Params ResultShow
Input Params
ON/CLOSE Close

Figura 6.79 Blloqet nga degëzimi i parë

0 Move Point		×	11 SucitonCup		×
Basic Params	ResultShow		Basic Params	ResultShow	
Input Params			Input Params		
Move Mode	JUMP		ON/CLOSE	Close	4
х	139.5614	P			
Υ	181.2427	d ^o			
Z	-32.7855	d			
R	0	d ^p			

Figura 6.80 Blloqet nga degëzimi i dytë

Testohet programi:

Në figurat në vijim tregohen rezultatet e blloqeve në rastin kur **nuk plotësohet kushti** (Testohet programi duke e vendosur një rreth me rreze 22.5mm (diametër 45mm)

Conditioned	Valid Value Ran	ge	
2 Scale Transformation 🔗	15.000 💠 —	20.000	* ×

Figura 6.81 Kushti (Rrezja e rrethit të detektuar duhet të ndodhet mes 15 dhe 20mm)

Figura 6.82 Blloku **Find Circle** (Koordinatat e qendrës së rrethit të detektuar)

Figura 6.83 Blloku Scale Transformation (Vlera e rrezes së rrethit të detektuar në milimetra)

Figura 6.84 Blloku **Calibration Transformation** (Vlera e koordinatave fizike të qendrës së rrethit të detektuar)

16 2021-10-09 14:33:24 Module Status:1Result:NG	No.	Time	Module Data	
		2021-10-09 14:33:24	Module Status:1Result:NG	

Figura 6.85 Blloku **If Module** (Nuk plotësohet kushti = (Rrezja e rrethit të detektuar nuk ndodhet mes 15 dhe 20mm))

Në figurat në vijim tregohen rezultatet e blloqeve në rastin kur **plotësohet kushti** (Testohet programi duke e vendosur një rreth me rreze 15mm (diametër 30mm))

Conditioned	Valid Value Range			
2 Scale Transformation 🔗	15.000 💠 —	30.000 🗘 🛞		

Figura 6.86 Kushti (Rrezja e rrethit të detektuar duhet të ndodhet mes 15 dhe 30mm)

Figura 6.87 Blloku Find Circle (Vlera e koordinatave të qendrës së rrethit të detektuar)

Figura 6.88 Blloku Scale Transformation (Vlera e rrezes së rrethit të detektuar në milimetra)

Figura 6.89 Blloku **Calibration Transformation** (Vlera e koordinatave fizike të qendrës së rrethit të detektuar)

No. Time Module Data 3 2021-10-09 14:16:59 Module Status:1Result:OK

Figura 6.90 Blloku **If Module (Plotësohet kushti =** (Rrezja e rrethit të detektuar ndodhet mes 15 dhe 30mm))

6.5 Vendosja e drejtkëndëshave në hapësirat në formë drejtkëndëshi

Në këtë shembull bëhet llogaritja e koordinatave të drejtkëndëshit dhe koordinatave të hapësirës ku duhet të vendoset ai drejtkëndësh në mënyrë automatike ku kapja dhe vendosja e objektit realizohet përmes krahut robotik.

Figura 6.91 Drejtkëndëshat dhe pllaka me hapësira në formë drejtkëndëshi

Hapat:

• Krijohet modeli për drejtkëndëshin dhe modeli për pllakën me hapësira në formë drejtkëndëshi përmes modulit Fast Match.

Figura 6.92 Drejtkëndëshat dhe pllaka me hapësira në formë drejtkëndëshi

- Me anë të skriptës llogaritet këndi i efektorit të fundëm me qëllim që të vendoset drejtkëndëshi në hapësirën me formë drejtkëndëshi me saktësi.
- Këndi i efektorit të fundëm të krahut robotik është -150 deri 150. Për shkak se këndi i përputhjes së modelit mund të jetë -150 deri -180 ose 150 deri 180, prandaj përdoret skripta për të transformuar këndin e përputhjes në një kënd të ekzekutueshëm për krahun robotik.
- Koordinatat e imazhit konvertohen në koordinata fizike nga fajlli i kalibrimit.
- Vendoset drejtkëndëshi në hapësirën në formë drejtkëndëshi me anën e krahut robotik

Rrjedha e përgjithshme e zgjidhjes është paraqitur në figurën më poshtë:

Figura 6.93 Rrjedha e përgjithshme e zgjidhjes

Shtohet blloku Camera dhe përzgjedhen parametrat e saj.

		E	
			2592 * 1944
		Match	
	DOBOT	X,0000	V,0000 R-000 G-000 B-000
Common Params History Help			
Choose Camera Hikvision MV-CE0		1.000	
Image Width 2592 ‡		59215.000 ‡	
Image Height 1944 🗘		ASQFJWAREVindow	S
Fps 1.000 ‡		Go to Settings to activ MONO8	ate windows.

Figura 6.94 Parametrat e bllokut Camera

Shtohet blloku **Fast Match**. Tek sipërfaqja e regjionit të interesit **ROI** përzgjidhet sipërfaqja ku ndodhet drejtkëndëshi.

Figura 6.95 Blloku Fast Match

Përmes dritares ModelSettings krijohet modeli.

Figura 6.96 Dritarja ModelSettings

Pas ekzekutimit të programit ky bllok tregon numrin, koordinatat, këndin dhe shkallën e përputhshmërisë së objekteve me modelin e krijuar më sipër. Kjo tregohet në figurën më poshtë.

Figura 6.97 Rezultati pas ekzekutimit të bllokut Fast Match.

Llogaritja e këndit drejtkëndëshit:

Në figurën në vijim tregohet blloku **Shell Module** në të cilin kemi parametrin hyrës **var0** që është vlera e këndit të drejtkëndëshit të detektuar nga blloku paraprak. Kurse këndi **angle1** është vlera dalëse pas ekzekutimit të skriptës.

Përmes skriptës llogaritet këndi i drejtkëndëshit që duhet të përputhet me hapësirat në formë drejtkëndëshi në pllakë.

Input Param Image: Contract of the second secon	2 Sheil Module			×
Output Param Image:	Input Param 🖉	Leading In 1 using Sustry 1 Fast Match.Ma 3 using Syste 4 using Hik.: 5 closs User: 6 { 7 //the 8 int pro 9 float a 10 /// <si 11 /// In: 12 /// <!--13 public<br-->14 { 15 //</si 	Lead Out tchBoxAngle] server Script.Methods; Script:ScriptMethods,IProcessMethods count of process ocessCount ; angle; ummary> tialize the field's value when compiling summary> void Init() You can add other global fields here	-
Antonio	Output Param	13 pr 16 pr 17 any 18 } 19 20 /// <si 21 /// En 22 /// <th><pre>socut a du conter global fields mere gle = 0; ummary> ter the process function when running code once commary></pre></th><td></td></si 	<pre>socut a du conter global fields mere gle = 0; ummary> ter the process function when running code once commary></pre>	

Figura 6.98 Blloku Shell Module

```
E gjithë skripta tregohet më poshtë:
_____
                          -----
using System;
using System.Text;
using System.Windows.Forms;
using Hik.Script.Methods;
class UserScript:ScriptMethods,IProcessMethods
{
 //the count of process
  int processCount ;
  float angle;
 /// <summary>
 /// Initialize the field's value when compiling
 /// </summary>
  public void Init()
  {
```

```
//You can add other global fields here
    processCount = 0;
      angle = 0;
  }
  /// <summary>
  /// Enter the process function when running code once
  /// </summary>
  /// <returns></returns>
  public bool Process()
  {
    // You can add your codes here, for realizing your desired function
    //MessageBox.Show("Process Success");
    GetFloatValue("var0", ref angle);
    if (angle < -135) {
       angle = 180 + angle;
    }else if (angle > 135) {
       angle = -(180 - angle);
    }
    SetFloatValue("angle1", angle);
    return true;
  }
}
```

Konvertimi i koordinatave të imazhit në koordinata fizike bëhet përmes bllokut **Calibration Transformation** të treguar tek Figura 6.99.

Tek Image Point përzgjidhen koordinatat e qendrës së drejtkëndëshit të detektuar (MatchPointX, MatchPointY) nga blloku Fast Match. Tek bllokut Calibration Transformation gjithashtu shtohet edhe fajlli i kalibrimit.

Basic Params R	sult Show	
mage Input		
Input Source	0 Camera.ImageData	8
mage Coord Inpu		
Input Mode	 By Point By Coordinate 	
Image Point	1 Fast Match.Match	Po 🧬 1 Fast Match Match P
Align File		
Load Calibration	File E:\1\Shenimet\4. Kalib	mi 🥽

Figura 6.99 Blloku Calibration Transformation

Lëvizja e krahut robotik për te qendra e objektit të detektuar bëhet përmes bllokut **Move Point.** Tek parametrat e këtij blloku si koordinata **x** dhe **y** vendosen koordinatat fizike të qendrës së drejtkëndëshit të detektuar e marra nga blloku **Calibration Transformation**. Ndërsa vlera e koordinatës **z** ose lartësisë së objektit është statike, kjo vlerë merret nga dritarja **DobotStudio** e cila në kohë reale tregon koordinatat e efektorit të fundëm të krahut robotik.

4 Move Point				×
Basic Params	ResultShow			
Input Params				
Move Mod	е	JUMP		
х		3 Calib Transformation	e	3 Calib Transformation.WorldPointX[]
Y		3 Calib Transformation	8	3 Calib Transformation.WorldPointY[]
Z		-62.5443	e	
R		0	P	
		Execute	Con	firm

Figura 6.100 Parametrat e bllokut Move Point

Për ta kapur këtë objekt e shtojmë bllokun Suction Cup. Tek ky bllok përzgjidhet opsioni On.

5 SucitonCup		×
Basic Params	ResultShow	
Input Params		
ON/CLOSE	On	
	Execute	Confirm

Figura 6.101 Parametrat e zgjedhur tek blloku Suction Cup

Rregullimi i këndit të drejtkëndëshit bëhet përmes bllokut **Move point**. Tek parametrat e këtij blloku si koordinata **x** dhe **y** vendosen koordinatat fizike të qendrës së drejtkëndëshit të detektuar e marra nga blloku **Calibration Transformation**. Tek vlera e koordinatës **z** e vendosim një vlerë e cila është më lart sesa vlera z te blloku **4Move Point**. Koordinata **R** paraqet këndin e efektorit të fundëm, vlera e koordinatës vendoset vlera e këndit të llogaritur nga skripta më lartë.

2010/00-12010-000-00			
Input Params			
Move Mode	MOVJ		
х	3 Calib Transformation	al 3 Calib	Transformation.WorldPointX[]
γ	3 Calib Transformation	8 3 Calib	Transformation.WorldPointY[]
Z	0	8	
R	2 Shell Module.angle1	P 2 Shell	Module.angle1[]

Figura 6.102 Parametrat e bllokut Move Point

Tek blloku **Fast Match** i treguar në figurën më poshtë. Tek sipërfaqja e regjionit të interesit **ROI** përzgjidhet sipërfaqja ku ndodhet pllaka me hapësira në formë drejtkëndëshi.

Figura 6.103 Përzgjidhja e ROI tek blloku Fast Match për pllakën

Përmes dritares ModelSettings krijohet modeli.

Figura 6.104 Krijimi i modelit për hapësirat në formë drejtkëndëshi

Pas ekzekutimit të programit ky bllok tregon numrin, koordinatat, këndin dhe shkallën e përputhshmërisë së objekteve me modelin e krijuar më sipër. Kjo tregohet në figurën më poshtë.

Figura 6.105 Rezultati pas ekzekutimit të bllokut Fast Match

Llogaritja e këndit drejtkëndëshit:

Në figurën në vijim tregohet blloku Shell Module në të cilin kemi parametrat hyrës:

var0 - është vlera e këndit të llogaritur nga skripta më lartë.

var1 - vlera e këndit hapësirës në formë drejtkëndëshi të detektuar nga blloku paraprak.

Kurse këndi angle2 është vlera dalëse pas ekzekutimit të skriptës së bllokut më poshtë.

Përmes skriptës llogaritet këndi i drejtkëndëshit që duhet të përputhet me hapësirat në formë drejtkëndëshi në pllakë.

8 Shell Module				×
Input Param	1	Leading In Lead Out		
var0 (float)	2 Shell Module.a	2 Shell Module.angle1[] t;		1
> var1 (float)	7 Fast Match.Ma	<pre>7 Fast Match.MatchBoxAngle[] ods; ods; 5 class UserScript:ScriptMethods,IProcessMethods 6 { 7 //the count of process 8 int processCount ; 9 float var0; 10 float var0; 11 float var1; 11 float var2; 12 /// (summary> 13 /// Initialmary> 13 public void Init()</pre>		
Output Param angle2 (float) 	2	<pre>10 1 17 //You can add other global fields here 18 processCount = 0; 19 20 float var0 = 0; 21 float var1 = 0; 22 float var2 = 0:</pre>		
			Valla	2000

Figura 6.106 Blloku Shell Module

E gjithë skripta tregohet më poshtë:

```
using System;
using System.Text;
using System.Windows.Forms;
using Hik.Script.Methods;
class UserScript:ScriptMethods,IProcessMethods
{
    //the count of process
    int processCount ;
    float var0;
    float var0;
    float var1;
    float var2;
    /// <summary>
    /// Initialize the field's value when compiling
    /// </summary>
    public void Init()
```

{

```
//You can add other global fields here
    processCount = 0;
      float var0 = 0;
      float var1 = 0;
      float var2 = 0;
  }
  /// <summary>
  /// Enter the process function when running code once
  /// </summary>
  /// <returns></returns>
  public bool Process()
  {
    // You can add your codes here, for realizing your desired function
    //MessageBox.Show("Process Success");
    GetFloatValue("var0", ref var0);
    GetFloatValue("var1", ref var1);
    if (var1 < -135) {
       var2 = var0 - (180 + var1);
    }else if (var1 > 135) {
       var2 = var0 + (180 - var1);
    }else {
       var2 = var0 - var1;
    }
    SetFloatValue("angle2", var2);
    return true;
  }
}
```

Konvertimi midis sistemit të koordinatave të kamerës dhe sistemit të koordinatave të krahut robotik mund të realizohet nga moduli i Calibration Transformation. Tek Image Point përzgjidhet qendra e hapësirës në formë drejtkëndëshi të detektuar nga blloku Fast Match, edhe tek ky bllok shtohet fajlli i kalibrimit i krijuar më parë. Pas ekzekutimit të programit fitohet vlera e koordinatave fizike të qendrës së hapësirës në formë drejtkëndëshi të detektuar.

Basic Params Result Shore	w	
Image Input		
Input Source	0 Camera.ImageData	
Image Coord Input		
Input Mode	 By Point By Coordinate 	
Image Point	7 Fast Match.Match Po 🥜	7 Fast Match Match Point
Align File		
Load Calibration File	E:\1\Shenimet\4. Kalibrii 🗁	
	Execute Con	dirm

Figura 6.107 Parametrat e bllokut Calibration Transformation

Figura 6.108 Koordinatat fizike të qendrës së hapësirës në formë drejtkëndëshi të detektuar

Lëvizja e krahut robotik e cila po e bart drejtkëndëshin për te qendra e hapësirës në formë drejtkëndëshi bëhet përmes bllokut **Move Point**. Tek parametrat e këtij blloku si koordinata **x** dhe **y** vendosen koordinatat fizike të qendrës së hapësirës në formë drejtkëndëshi e detektuar, këto koordinata merren nga blloku **Calibration Transformation**. Ndërsa vlera e koordinatës **z** ose lartësisë në të cilën lëshohet drejtkëndëshi në hapësirë është statike, kjo vlerë merret nga dritarja **Dobot studio** e cila në kohë reale tregon koordinatat e efektorit të fundëm të krahut robotik.

Basic Params	ResultShow			
Input Params			Ĩ	
Move Mode		JUMP		
х		9 Calib Transformation 🔗	9 Calib	Transformation.WorldPointX[]
Y		9 Calib Transformation 🥜	9 Calib	Transformation.WorldPointY[
Z		-60.5443 🥔		
R		8 Shell Module.angle2 🥜	8 Shell	Module.angle2[]

Figura 6.109 Parametrat e bllokut Move Point

Për ta lëshuar drejtkëndëshin shtojmë bllokun **Suction Cup**. Tek ky bllok përzgjedhet opsioni **Close**.

11 SucitonCup	:	×
Basic Params	ResultShow	
Input Params		
ON/CLOSE	Close	
	Execute Confirm	n

Figura 6.110 Parametrat e zgjedhur tek blloku Suction Cup

Vendoset krahu robotik në një pozitë në të cilën nuk zihet pamja e kamerës dhe merren ato koordinata dhe shtohen tek blloku **Move Point**.

12 Move Point				×
Basic Params	ResultShow			
Input Params				
Move Mode		JUMP		
Х		199.9714		P
Y		0.0000		P
Z		50.1084		P
R		0		P
			Execute	Confirm

Figura 6.111 Parametrat e bllokut Move Point

Testimi i programit:

<u>Rasti 1</u>.

Figura 6.112 Pamja fillestare

Figura 6.113 Blloku 1Fast Match

Figura 6.114 Pamja pas ekzekutimit të bllokut **4Move Point** për Z=-62.5443; R=0

Figura 6.115 Pamja pas ekzekutimit të bllokut **6Move Point** për Z=0; R=2shell Module.angle1

Figura 6.116 Blloku 7Fast Match

Figura 6.117 Pamja pas ekzekutimit të bllokut **10Move Point** për Z=-60.5443 ;R=8shell Module.angle2

Figura 6.118 Pamja finale për Z=50.1084 ;R=0

<u>Rasti 2</u>.

Figura 6.119 Pamja fillestare

Figura 6.120 Blloku 1Fast Match

Figura 6.121 Pamja pas ekzekutimit të bllokut **4Move Point** për Z=-62.5443; R=0

Figura 6.122 Pamja pas ekzekutimit të bllokut **6Move Point** për Z=0; R=2shell Module.angle1

Figura. Blloku 7Fast Match

Figura 6.123 Pamja pas ekzekutimit të bllokut **10Move Point** për Z=-60.5443; R=8shell Module.angle2

Figura 6.124 Pamja finale për Z=50.1084 ;R=0

<u>Rasti 3.</u>

Figura 6.125 Pamja fillestare

Figura 6.126 Blloku 1Fast Match

Figura 6.127 Pamja pas ekzekutimit të bllokut **4Move Point** për Z=-62.5443; R=0

Figura 6.128 Pamja pas ekzekutimit të bllokut **6Move Point** për Z=0 ;R=2shell Module.angle1

Figura 6.129 Blloku 7Fast Match

Figura 6.130 Pamja pas ekzekutimit të bllokut **10Move Point** për Z=-60.5443 ;R=8shell Module.angle2

Figura 6.131 Pamja finale për Z=50.1084; R=0

Figura 6.132 Pamja fillestare

Figura 6.133 Blloku **1Fast Match**

Figura 6.134 Pamja pas ekzekutimit të bllokut **4Move Point** (Z=-62.5443 ;R=0)

Figura 6.135 Pamja pas ekzekutimit të bllokut **6Move Point** për Z=0; R=2shell Module.angle1

Figura 6.136 Blloku 7Fast Match

Figura 6.137 Pamja pas ekzekutimit të bllokut **10Move Point** për Z=-60.5443 ;R=8shell Module.angle2

Figura 6.138 Pamja finale për Z=50.1084 ;R=0

7. PËRFUNDIMI

Njerëzit me anë të mendjes dhe shikimit të tyre mund të kryejnë detyra të caktuara në një linjë prodhimi por tek njerëzit pritet një shkallë gabimi që rritet pas një kohe në një detyrë të caktuar dhe ata lodhen gjatë punës.

Automatizimi në prodhim ka reduktuar numrin e punëve që kryhen nga njerëzit. E përdorimi i robotëve industrialë ka revolucionarizuar plotësisht mënyrën se si bëhet automatizimi në prodhim. Pra, kur nevojitet të kapet ndonjë objekt dhe të vendoset në një pozitë, një robot mund të trajnohet për ta bërë këtë.

Sistemet e robotik pa vizion duhet të trajnohen me koordinata fikse. Kjo gjë paraqet problem për një linjë transportuese ku pjesa lëviz. Prandaj në këtë rast duhet të përdoren robotët që drejtohen nga vizioni (ang. Vision Guided Robots).

Sistemi i vizionit fotografon pjesën me këtë rast identifikon vendndodhjen e pjesës dhe prej imazhit softueri i kalkulon koordinatat fizike në të cilat ndodhet pjesa. Pastaj këto koordinata i jepen robotit i cili është programuar të kryej ndonjë punë.

Mundësitë që ofron vizioni makinerik po shtohen. Ndërsa teknologjia që shkon në sistemet e vizionit përparon, potenciali për aplikime të reja zgjerohet. Kjo reflektohet në rritjen e këtij sektori.

Nga ana makinerike, zhvillimet e komponentëve po ofrojnë lëndë të para shumë të përmirësuara, të tilla si shumëllojshmëri më e madhe e kamerave që mund të përdoren për të krijuar zgjidhje shumë specifike të kapjes së imazhit, lente të reja, robotikë të ndërlikuar dhe më shumë. Shumë sisteme vizioni mund të aplikohen me sukses në pothuajse çdo aktivitet prodhimi, për sa kohë që përdoruesi e di saktësisht se si të vendosë parametrat e sistemit. Ky konfigurim, megjithatë, kërkon një sasi të madhe njohurish nga integruesi dhe numri i mundësive mund ta bëjë zgjidhjen komplekse.

7.2 Rekomandimet

Integrimi i vizionit tek robotët jep shumë përparësi por vizioni 2D nuk mjafton, ata duhet të jenë në gjendje të perceptojmë mjedisin sikur ne e perceptojmë mjedisin tonë pra në 3D.

Meqenëse objektet mund të jenë të ndryshme në madhësi dhe distanca dhe kërkesat e detyrave mund të jenë gjithashtu të ndryshme për aplikime të ndryshme, një senzorë vizioni i fiksuar në strukturë nuk funksionon mirë në raste të tilla. Një senzorë i rikonfigurueshëm, nga ana tjetër, mund të ndryshojë parametrat e tij strukturorë për t'u përshtatur me skenën për të marrë informacion maksimal 3D nga mjedisi. [11]

Në një sistem vizual aktiv, meqenëse sensori duhet të lëvizë nga një vend në tjetrin për të kryer një detyrë vizioni me shumë pamje, një senzorë tradicional i shikimit me strukturë fikse shpesh është i pamjaftueshëm që roboti të perceptojë tiparet e objektit në një mjedis të pasigurt si distanca dhe madhësia e objektit janë të panjohura përpara se roboti ta shohë atë. Një senzorë i rikonfigurueshëm dinamikisht mund të ndihmojë robotin të kontrollojë konfigurimin dhe të shikojë sipërfaqet e objektit.

8. LITERATURA

- "German National Library". International classification system of the German National Library (GND). Nocks, Lisa (2007). The robot : the life story of a technology. Westport, CT: Greenwood Publishing Group.
- [2].Zeuch, N. (2000). Understanding and applying machine vision. Switzerland: Taylor & Francis.
- [3].Optoelectronics in Machine Vision-Based Theories and Applications. (2018). United States: IGI Global.
- [4]. Ulrich, M., Wiedemann, C., Steger, C. (2018). Machine Vision Algorithms and Applications. Germany: Wiley.
- [5].Burke, M. (2012). Image Acquisition: Handbook of Machine Vision Engineering: Volume1. Netherlands: Springer Netherlands.
- [6].Radke, R. J. (2013). Computer Vision for Visual Effects. United Kingdom: Cambridge University Press.
- [7]. Oostendorp, N., Scott, K., Oliver, A., Demaagd, K. (2012). Practical Computer Vision with SimpleCV. Germany: O'Reilly Media, Incorporated.
- [8].Li, Y. F., Zhang, B. (2012). Automatic Calibration and Reconstruction for Active Vision Systems. Netherlands: Springer.
- [9]. Boyle, R., Hlavac, V., Sonka, M. (2014). Image Processing, Analysis, and Machine Vision. United States: Cengage Learning.
- [10]. Shenzhen Yuejiang Technology Co. Ltd. 2019. "Dobot Magician User Manual"
- [11]. Shenzhen Yuejiang Technology Co. Ltd. 2019. "Dobot-Vision-Kit-Hardware-Specification"
- [12]. Shenzhen Yuejiang Technology Co. Ltd. 2019. "DobotVisionStudio Software User Guide"
- [13]. Craig, John J. 2014. Introduction to Robotics Mechanics and Control. Pearson
- [14]. Islam, R., & Rahaman, A. (2019). Cartesian Trajectory Based Control of Dobot Robot.
- [15]. Chen, S., Li, Y., Zhang, J., & Wang, W. (2014). Active Sensor Planning for Multiview Vision Tasks. Berlin: Springer Berlin.

9. SHTOJCA 1

9.1 Kalibrimi i robotit

Rrjedha e përgjithshme e zgjidhjes është paraqitur në figurën 9.1:

Figura 9.1 Rrjedha e përgjithshme e zgjidhjes

Përmes ikonës Se programit **DobotVisionStudio** hapet dritarja **DobotStudio**. Tek kjo dritare klikohet ikona Se përmes të cilët krijohet lidhja mes softuerit dhe krahut robotik. Pas krijimit të kësaj lidhje klikohet ikona Ser ta kthyer krahun robotik në pozicionin fillestar. Drita e gjelbër Se në robot është indikacion se roboti është në gjendje stabile dhe mund të vazhdohet me operacionet që dëshirojmë të kryejmë me të.

Shtohet blloku Camera dhe përzgjidhen parametrat e saj.

Choose Camera	Hikvision MV-CE0	C	Actual Fps	6.400	
Image Width	2592		Exposure Time	100138.000 🗘	
Image Height	1944		Trigger Source	SOFTWARE	
Fps	30.000		Pixel Format	MONO8	

Figura 9.2 Parametrat e bllokut **Camera**

Tek pamja e kamerës vendoset pllaka e kalibrmit.

Figura 9.3 Vendosja e pllakës së kalibrimit në pamjen e kamerës

Shtohet blloku **CalibBoard Calib** dhe ekzekutohet programi pastaj fitojmë pamjen si në figurën në vijim.

Figura 9.4 Pamja pas ekzekutimit të bllokut CalibBoard Calib

Shtohet blloku **N-Point Calibration**. Te ky bllok numri i translacioneve vendoset **9** dhe përmes ikonës hapet dritarja **Edit Calibration Points**. Vendoset efektori i fundëm i robotit në **9** pikat e treguara në figurën më poshtë në secilën pozitë përmes dritares **DobotStudio** merren koordinatat fizike **x** dhe **y** dhe plotësohet tabela **Edit Calibration Points**.

Figura 9.5 9 pikat e kalibrimit

Figura 9.6 Blloku **N-Point Calibration**

Pas plotësimit të tabelës **Edit Calibration Points** klikohet **Confirm** dhe më pas tek dritarja **N-Point Calibration** klikohet **Create Calibration File** për ta ruajtur fajllin e kalibrimit i cili është përdorur në të gjithë shembujt e treguar në kapitullin e 5.

UNIVERSITETI I PRISHTINËS "HASAN PRISHTINA" FAKULTETI I INXHINIERISË MEKANIKE

10. DEKLARATA ETIKE

Unë, Blerta Hajdini me numër te regjistrimit (indeksit) 180805200004 deklaroj se,

punimi i diplomës me titull:

"Manipulimi i krahut robotik bazuar në imazhet e marra nga kamera"

- paraqet rezultatet e punës sime shkencore hulumtuese,
- punimi i diplomës në tersi apo pjesërisht nuk është paraqitur në ndonjë program akademik në Fakultete tjera apo Universitete,
- rezultatet e prezantuara në punimin e diplomës janë të besueshme dhe janë të specifikuara ne mënyrën e duhur, dhe
- nuk i kam shkel të drejtat autoriale.

Vendi, data Prishtinë, 27/04/2022 Emri dhe Mbiemri, nënshkrimi Blerta Hajdini _____